CS 70 Discrete Mathematics and Proloa]oility Theor
Fall 2016 by Alvin Wan, Vivek Raghuram MT§ Practice

This worksheet contains problems for every section covered on your midterm 2. Vivek and
Alvin wrote these problems from scratch, keeping in mind what has and has not been covered
this Fall 2016 semester.

* Modular Arithmetic

* Bijections and RSA

* Polynomials

* Error Correcting Codes

* Infinity and Uncountability

* Self-Reference and Uncomputability
* Counting

* Introduction to Discrete Probability
* Conditional Probability

Note that problems here were designed to challenge you and to exercise your knowledge
of these topics. In some cases, several topics were drawn upon to create the question. We
recommend selectively working on topics where you feel weakest.

The concentration of questions in this review do not correspond to the concentration of ques-
tions on the exam.
1. Piazza

Between the CS70 and CS170 piazzas, if there are exactly 8 unresolved questions total, Sinho
will resolve all of them (This means there can never be more than 8 unresolved questions).
Let us pretend that Sinho can resolve questions instantaneously and he does not tend to
Piazza if there are fewer than 8 unresolved questions. Sinho tells you that there are a total of
3 unresolved questions.

(a) Is it possible for CS70 to have as many unresolved posts as CS170?
(b) Is it possible for CS170 to have twice as many unresolved posts as CS70?

Solution:

Let x be the number of unresolved posts on CS70 Piazza and y be the number of unresolved
posts on CS170 Piazza. We know that x +y is always mod 8. If there are 3 unresolved posts,
then

x+y=3(mod 8)

CS 70, Fall 2016, MT?2 Practice

s

(a) No. If CS70 has as many unresolved posts as CS170, then x = y. We have that

2y = 3(mod 8)

Since 2 is not co-prime with 8, the multiplicative inverse of y does not exist. Thus, there
may be multiple solutions or none. We can reduce the equation to y = %(mod 4), which
we note can never be true, since fractions do not exist in the (mod 4) universe. Thus, if
Sinho observes 3 total posts, CS70 cannot have the same number of unresolved posts as
CS170.

(b) Yes. If CS170 has twice times as many, then y = 2x. We have that

3x = 3(mod 8)

Since 3 is co-prime to 8, we have that there is a unique multiplicative inverse, gaurantee-
ing us a unique solution. However, we could also just note by inspection that x =1 is a
solution. Thus, it is possible for CS170 to have twice as many unresolved posts as CS70.

2. Random Uniqueness

Consider the following scenarios, where we apply probability to polynomials. We generate
a new polynomial Q in GF(7), by randomly picking 6 numbers in (mod 7), for a polynomial
of the form.

a5x5 + a4x4 + a3x3 + a2x2 +aix+ag
The first number we pick is as, the second number is a4 etc.

(a) What is the probability that the polynomial has degree at least 4?
(b) What is probability we have a unique polynomial of degree less than 4?

(c) Now, consider only degree 5 polynomials that were randomly generated using the scheme
described above. What is the probability that the sum of its coefficients is equal to 6?

Solution:

(a) We first consider the number of total assignments. There are 7. We now count the
number of valid assignments. We note that a valid degree 4 polynomial has as =0
and a4 # 0. There are a total of (1)(6)(74) ways. Next, we note that a valid degree 5
polynomial has as # 0. Thus, there are a total of 6(7°). In sum, we now have

6(7%) +6(7°)
76
(b) This is 1 minus the previous part. So, we have the following.

6(7%) +6(7°)

1— 76

CS 70, Fall 2016, MT?2 Practice 2

(c) We note that there are 6(7°) different coefficients; there are only 6 options for the first
coefficient since it cannot be 0. We now compute all the possible ways to achieve a sum
of 6. This is simply stars and bars, where the first bin must have at least one ball (as
cannot be zero). We distribute the sum 5 among 6 bins: (150). Thus, our probability is

3. Maybe Lossy Maybe Not

Let us say that Alice would like to send a message to Bob, over some channel. Alice has a
message of length 4 and sends 5 packets.

(a) Packets are dropped with probability p. What is probability that Bob can successfully
reconstruct Alice’s message?

(b) Again, packets can be dropped with probability p. The channel may additionally corrupt
1 packet. Alice realizes this and sends 3 additional packets. What is the probability that
Bob receives enough packets to successfully reconstruct Alice’s message?

(c) Again, packets can be dropped with probability p. This time, packets may be corrupted
with probability g. Consider the original scenario where Alice sends 5 packets for a
message of length 4. What is probability that Bob can successfully reconstruct Alice’s
message?

Solution:

(a) Alice’s message requires a polynomial of degree 3, which can be uniquely identified by
4 points. Thus, at least 4 points need to make it across the channel. The probability that
Bob can recover the message is thus the probability that none of the packets are lost.
Since the packets are lost with probability with probability p, we have the probability of

losing 1 packet is
5
(1) (1=p)*p

The probability of losing 0 packets is (1 — p)>. Thus, the probability of losing 0 or 1
packets is

G)(l —p)'p+(1-p)

This is the probability that Bob receives 4 packets, meaning he can successfully recon-
struct the 3-degree polynomial.

(b) Bob needs n+ 2k = 6 packets to guarantee successful reconstruction of Alice’s message.
There are a total of 8 packets sent, so this guarantee occurs only if 0 packets, 1 packet or
2 packets are lost. The probability of 0 packets lost is

CS 70, Fall 2016, MT2 Practice 3

(1-p)°

The probability of one packet lost is
The probability of two packets lost is

Thus, the probability of success is

(1-p)+ (?)p(l -p)+ (i)pz(l —p)°

(c) Again, Bob can reconstruct the message if and only if none of the packets are corrupted.
We use the same idea as in part (a). The probability that none of the packets are corrupted
is (1 —q)>. We know that on top of being uncorrupted, we can only at lose at most 1
packet. Thus, we can either lose one packet, which has probability

) p(1—p)*
()

Or, we can lose no packets, which has probability (1 — p)>.
As a result, we have the following.

(1 —61)5[(317(1 —p)*+(1=p)’]

4. Hilbert’s Paradox of the Grand Hotel
Consider a magical hotel with a countably infinite number of rooms numbered according to
the natural numbers where all the rooms are currently occupied. Assume guests don’t mind
being moved out of their current room as long as they can get to their new room in a finite
amount of time.

(a) Suppose one new guest arrived in their car, how would you shuffle guests around to
accommodate them? What if k guests arrived, where £ is a constant positive integer?

(b) Suppose a countably infinite number of guests arrived in an infinite length bus with seat
numbers according to the natural numbers, how would you accommodate them?

(c) Suppose a countably infinite number of infinite length buses arrive carrying countably
infinite guests each, how would you accommodate them? (Hint: There are infinitely
many prime numbers)

Solution:

CS 70, Fall 2016, MT?2 Practice 4

(a) Shift all guests into the room number k greater than their current room number. So for
a guest in room i move them to room i+ k. Then place the k new guests in the k first
rooms in the hotel which will now be unoccupied.

(b) Place all existing guests in the room 2i where i is their current room number. Place all
the new guests in the room 2+ 1 where j is their seat number on the bus.

(c) Place all existing guests in the room 2° where i is their current room number. Assign the
(k+2)th prime, py. 2, to the kth bus (e.g. the Oth bus will be assigned the 2nd prime, 3).
We then place each new guest in the room pﬁé where j is the seat number of the new
guest in their bus.

This works because any power of a prime p will not have any other prime factors than p.

Yes, there will be plenty of empty rooms, but that’s okay because every guest will still
have somewhere to stay.

5. Impossible Programs
Show that none of the following programs can exist.

(a) Consider a program P that takes in any program F', input x and output y and returns true
if F(x) outputs y and returns false otherwise.

(b) Consider a program P that takes in any program F and returns true if F(F) halts and
returns false if it doesn’t halt.

(c) Consider a program P that takes in any programs F' and G and returns true if F and G
halt on all the same inputs and returns false otherwise.

Solution:

(a) If P exists we can solve the halting problem. We show this by constructing machine
HALT (F,x) where F is a program and x is the input. We will use P as a subroutine to
derive a contradiction.
def HALT(F, Xx):

v = 0 # arbitrarily chosen
def F_prime (x):

F(x)

return y
return P(F_prime, x, V)

We modify F to create F that runs F(x) and if F(x) halts it outputs an arbitrarily chosen
output y. We then call P(f,x,y) and if it returns true then F(x) halts and if it returns
false then F(x) must not halt. Therefore we have solved the halting problem. This
is a contradiction because halting problem is uncomputable. Therefore the program P
cannot exist.

CS 70, Fall 2016, MT2 Practice 5

(b) If P exists we can solve the halting problem. We show this by constructing machine
HALT (F,x) where F is a program and x is the input. We will use P as a subroutine to
derive a contradiction.
def HALT(F, X):

def F_prime (ignore) :
return F (x)
return P (F_prime)

We construct function F which ignores its input and simply runs F(x). We then call
P(F). If P(F') returns true then F(x) must have halted otherwise P(F’) will have re-
turned false. Therefore we have solved the halting problem. This is a contradiction
because halting problem is uncomputable. Therefore the program P cannot exist.

(c) If P exists we can solve the halting problem. We show this by constructing machine
HALT (F,x) where F is a program and x is the input. We will use P as a subroutine to
derive a contradiction.
def HALT(F, Xx):

def F_prime (y) :
F(x)
while x != y:
pass
return

def G(y):
while x != y:
pass
return
return P (F_prime, G)

We construct functions G and F’. Both functions loop forever unless the input is x.
Additionally, F’ runs F(x) and so only halts if F(x) halts. We then call P(F’,G) and if
the answer is true then the the F halts on x otherwise it does not halt on x. Therefore
we have solved the halting problem. This is a contradiction because halting problem is
uncomputable. Therefore the program P cannot exist.

6. Kolmogorov Complexity
Compression of a bit string x of length n involves creating a program shorter than » bits that
returns x. The Kolmogorov complexity of a string K(x) is the length of shortest program that
returns x (i.e. the length of a maximally compressed version of x).

(a) Explain why "the smallest positive integer not definable in under 100 characters" is
paradoxical.

(b) Prove that for any length n, there must be at least one bit string that cannot be com-
pressed.

CS 70, Fall 2016, MT2 Practice 6

(c) Imagine you had the program K, which outputs the Kolmogorov complexity of string.
Design a program P that when given integer n outputs the bit string of length n with the
highest Kolmogorov complexity. If there are multiple strings with the highest complex-
ity, output the lexicographically first (i.e. the one that would come first in a dictionary).

(d) Suppose the program P you just wrote can be written in m bits. Show that P and by
extension, K, cannot exist, for a sufficiently large input n.

(e) Consider the program I, which can be written in m bits, that when given any input
string x returns true if x is incompressible and returns false otherwise. Show that such a
program cannot exist.

Solution:

(a) Since there are only a finite number of characters then there are only a finite number
of positive integers that can be defined in under 100 characters. Therefore there must
be positive integers that are not definable in 100 characters and by the well-ordering
principle there is a smallest member of that set. However the statement "the smallest
positive integer not definable in under 100 characters" defines the smallest such an inte-
ger using only 67 characters (including spaces). Hence, we have a paradox (called the
Berry Paradox).

(b) The number of strings of length n is 2"". The number of strings shorter than length n is
Z;’:—OI 2. We know that sum is equal to 2" — 1 (remember how binary works). Therefore
the cardinality of the set of strings shorter than n is smaller than the cardinality of strings
of length n. Therefore there must be strings of length n that cannot be compressed to
shorter strings.

(c) We write such a program as follows:
def P (n):

complex_string = "0" x n

for j in range(l, 2%%*n):
some fancy python to convert j into binary
bit_string = "0:b".format (j)
length should now be n characters
bit_string = (n - len(bit_string)) * "O0" + bit_string
if K(bit_string) > K(complex_string):

complex_string = bit_string
return complex_string

(d) We know that for every value of n there must be an incompressible string. Such an
incompressible string would have a Kolmogorov complexity greater than or equal to its
actual length. Therefore our program P must return an incompressible string. However,
suppose we choose size ny such that n; >> m. Our program P(n;) will output a string
x of length ny that is not compressible meaning K (x) > n;. However we have designed
a program that outputs x using fewer bits than n;. This is a contradiction. Therefore K
cannot exist.

CS 70, Fall 2016, MT2 Practice 7

(e) We prove K does not exist by writing a program § that will output a string x where
|S| < K(x). This would be a contradiction and so we must conclude K does not exist.
def S():

i=1
while 1 > 0:
for j in range(l, 2x%1i):
bit_string = "0:b".format (7J)
bit_string = (i - len(bit_string)) * "O" + bit_string
if I(bit_string) and len(bit_string) > m + c
return bit_string
i+=1

The program S must take a finite number of bits. We select a constant ¢ such that it is
larger than the length of S. Therefore the total program including S and K must take less
than m + ¢ bits. § goes through every binary strings and returns the first incompressible
one that is longer than m + ¢ bits. Notice the contradiction? We have found a string x
that / says cannot be compressed. However, we have a program of length less than |x|
that outputs x, satisfying our definition of compression. Therefore I cannot exist.

7. Binomial Theorem
The binomial theorem states the following:

Prove this theorem using a combinatorial proof.

Solution: Imagine you are throwing n numbered balls into bins. There are x red bins and y
blue bins

LHS: This is the number of ways of throwing n distinct balls into the bins.

RHS: Consider each term (’Z)x”*kyk . This is the number of ways of throwing the balls with k
landing in the blue bins and n — k landing in the red bins. The choose gives us the number of
ways of dividing the balls between landing in blue and landing in red. The value x*~* gives
us the number of ways that n — k balls can be thrown into the red bins. The value y* gives
us the number of ways that k balls can be thrown into the blue bins. Therefore for each way
of allocating k balls to blue and rest to red, we have x" % ways for them to land in red and
y* ways for them to land into blue. Therefore the product gives the number of ways to throw
the balls given that k land in the blue bins and n — k land in the red bins.

If we sum up the terms on the right hand side, we get the total number of ways of throw-
ing the balls into the bins.

CS 70, Fall 2016, MT2 Practice 8

8. Crazy Balls and Bins
Imagine you had 5 distinct bins and randomly threw 7 identical balls into the bins with
uniform probability.

(a) What is likelihood that the first bin has at least 3 balls in it?

(b) What is likelihood that the first bin has exactly 3 balls in it?

(c) What is likelihood that at least one bin has exactly 3 balls in it?

(d) What is likelihood that the at least one bin has at least 3 balls in it?

Solution:

(@) Y5 (7)(1/5)%(4/5)7*
®) (3)(1/5)3(4/5)*

(c) Use inclusion-exclusion. Let A; be the event that bin i has exactly 3 balls. Then
Yo PrjA] =5 (;) (1/5)3(4/5)*. We have to subtract the events A; N A, of which there
are (3). We have Pr[A;NA;] = 7!/(3!)%(1/5)%(3/5). Therefore our answer is

s(7 1\ /a* 5\ 70 [1\°3

3 5 5 2/)3131\5/) 5
(d) We build off our answer above. For the case where k balls fall in bin i, where k =
4,5,6,7, then we have a probability (7)(1/5)%(4/5)7*. Now, these events are disjoint

and the probabilities add. Finally, note that there is one case in which we overcount:
when 3 balls land in bin i and 4 balls land in bin j. The probability of this case is

() G)/5)".

7N (N (4N 5\ 7 (N3 &\ (N AT s\ 7 1Y
s(O)(2) (2) -(2)s (L) 2+5)) (2) - .
3)\5 5 2)3131\5/) 5 = \k/\5 5 2)\3/ \5
9. Teams and Leaders
Prove the following identities using a combinatorial proof.

@ X (1) = ()
) Yo k(1) =n(3)
Solution:

(a) Imagine you are a teacher picking students to be on a team for some competition. You
have 2n students, n of whom are boys and the other n are girls.

RHS: This is simply the number of ways you can pick n students to be on the team.

LHS: We begin by noticing that (Z)Z = (1) = (,",)- This product gives us the number
of ways of picking k girls and n — k boys to be on the team. We add up all the products
involving anywhere from 0 girls all the way to n girls. This gives us the total number of

ways to pick a team of n students.

CS 70, Fall 2016, MT2 Practice 9

(b) Imagine the same scenario as part A except now you have to choose a female team
leader amongst the n students on the team.

RHS: This is the number of ways of picking the team leader multiplied with the number
of ways of picking the rest of the team from the remaining students. The product gives
the total number of teams with a female leader.

LHS: We begin similarly by noticing that k * (Z)z =k (7) = (,",). Here as before we
are picking k girls and n — k boys to be on the team. However amongst the & girls on the
team, we choose one of them to be the team leader. We add up all the products involving
anywhere from O girls all the way to n girls. This gives us the total number of ways to
pick a team of n students with a female leader.

10. Finicky Bins

If a bin has at least 5 balls in a bin, the 5 balls will fall out and not be counted (e.g., 6 balls in
a bin is the same as 1). Compute the number of ways to distribute 7 indistinguishable balls
among 4 bins.

Solution:

Consider a normal bin, in which balls do not disappear. With stars and bars we see there are
(130) ways to distribute the balls. What if one bin has > 5 balls? There are 4 ways to choose
which bin has > 5 balls, and once we throw 5 balls into that bin, we are left to distribute 2
balls among 4 bins in () ways.

Now, for the bin in which balls do disappear. There are () —4(3) ways to distribute the

balls such that no balls disappear. There are 4(2) ways to distribute the balls such that 5
balls disappear, except that no matter where the disappearing balls are, there the resulting
distribution of balls is the same. Therefore, we have to divide by 4 and we obtain (g) ways
to distribute the balls such that 5 balls disappear. In total, we have

(5)=+()+()-(5)=0)

Your friend Forest has a bag of n coins. You know that k are biased with probability p (i.e.,
These coins have probability p of being heads). Let F be the event that Forest picks a fair
coin, and let B be the event that Forest picks a biased coin.. Forest draws three coins from
the bag, but he does not know which are biased and which are fair.

(a) What is the probability of FFH?
(b) What is the probability of picking at least two fair coins?

(c) Given that Forest flips the second coin and sees heads, what is the probability that this
coin is biased?

Solution:

CS 70, Fall 2016, MT2 Practice 10

(a) The probability of picking F' for the first coin is

n—k
n
The probability of picking F for the second coin, after picking one fair coin already is

n—k—1
n—1
The probability of picking B for the third coin is

k
n—72
Thus, the probability of picking the exact sequence F'FB is

(n—k)(n—k—1)k
nn—1)(n—2)

(b) Note that the probability of picking any sequence of two fair coins and a biased coin is
the same. It is in fact the probability from part a. We need to multiply by the number
of arrangements of biased and fair coins, however. So, the probability of picking any
sequence with two fair coins is

b))

We additionally need to consider the probability of getting 3 fair coins.
(n—k)!(n—3)!
n!(n—k—3)!
We simply sum the two to get our answer:
3\(n—k)(n—k—1k (n—k)!(n—3)!
1) n(n—1)(n—2) n!(n—k—3)!
(c) We can apply Bayes’ Rule. Let H denote the event that Forest sees heads.

Pr(H|B)Pr(B)

Pr(BIH) = =5

Note that Pr(H|B) = p and that Pr(B) = % We can now compute the denominator. Using
the law of total probability, we can expand Pr(H)

Pr(H) = Pr(H|B)Pr(B) + Pr(H|F) Pr(F)

B k+1n—k
_pn 2 n

_ 2pk+n—k
- 2n

CS 70, Fall 2016, MT?2 Practice 11

We now combine both parts to get our answer:

p(k/n) . 2pk
(2pk+n—k)/(2n) 2pk+n—k

CS 70, Fall 2016, MT?2 Practice

12

