
Crib 6

06 Nonlinear Least Squares, Gradi-
ent Descent
by Alvin Wan . alvinwan.com/cs189/fa17

Note that in the objective functions below, you may choose to featurize your data
i.e., replace all xi with φ(xi)

1 Nonlinear Least Squares

1. Train a linear model, then fine tune with iterative updates

2 Gradient Descent

1. Take steps along direction of gradient xi+1 = xi + η∇xf(x) for learning rate η
(why? see proof in appendix)

2. η should decrease as a function of i. Commonly used decay functions : expo-
nential, step function (e.g., multiply by 0.9 after every 500 steps)

3 Why Step in Direction of Gradient

3.1 Proof

First, why is the gradient the direction of greatest ascent? Take the directional
derivative for some loss function f and vector x. For θ, the angle between x and ∇f ,
we have

Dxf = ∇f · x = |∇f ||x|cos(θ)

Note this expression is minimized when θ = π, cos(θ) = −1. Thus, the direction that
decreases f the most, is opposite the gradient vector.
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3.2 Why ∇f?

Recall that the gradient step is xi+1 = xi + η∇xf(x). Intuitively, the gradient tells
us how much change in y occurs, if we perturb x by a little bit. Why does it make
sense, then, to update x with “change in y”?

We can look at this another way: Take f(x + ∆x). Intuitively, we can approximate
this point by taking f(x) and extending a tangent line ∆x-long. Thus,

f(x+ ∆x) ≈ f(x) + 〈∇f(x),∆x〉

Say we take the gradient step from above, so ∆x = −η∇f(x). Then, we have

f(x+ ∆x) ≈ f(x) + 〈∇f(x),−η∇f(x)〉
= f(x)− η〈∇f(x),∇f(x)〉
= f(x)− η‖∇f(x)‖2

≤ f(x)

In other words, taking a gradient step opposite the gradient tends to decreases our
loss function f .
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