
A Brief Compilation

of Guides, Analyses, and Problems

Structure and
Interpretation of Computer

Programs
at the University of California, Berkeley

Alvin Wan

Contents

0.1 Purpose . 4
0.1.1 Structure . 4
0.1.2 Breakdown . 4
0.1.3 Resources . 4

1 Higher-Order Functions 5
1.1 Guide . 5

1.1.1 Functions as Arguments 5
1.1.2 Nested Definitions . 5
1.1.3 Functions as Return Values 6

1.2 Problems . 7

2 Recursion 8
2.1 Guide . 8

2.1.1 Mutual Recursion . 8
2.1.2 Tree Recursion . 9
2.1.3 Cascade . 9

2.2 Analysis . 10
2.2.1 How do I even start? . 10

2.3 Problems . 11

3 Data Structures 12
3.1 Guide . 12

3.1.1 Linked Lists . 12
3.1.2 Trees . 13

3.2 Analysis . 14
3.2.1 Which leg of the cascade? 14
3.2.2 Patterns for Recursion . 15

3.3 Problems . 16
3.3.1 Linked Lists . 16
3.3.2 Trees . 16

4 Object-Oriented Programming 17
4.1 Guide . 17

4.1.1 Classes . 17
4.1.2 Attributes . 18
4.1.3 Inheritance . 18
4.1.4 Nonlocal . 18

4.2 Problems . 19

2

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

5 Implicit Sequences 20
5.1 Guide . 20

5.1.1 Iterator . 20
5.1.2 Generator . 21
5.1.3 Stream . 21

5.2 Problems . 22
5.2.1 Iterators and Generators 22
5.2.2 Streams . 22

Page 3

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

0.1 Purpose

This compendium is (unofficially) written for the Fall 2015 CS61A: Structure
and Interpretation of Computer Programs class taught by Professor John DeNero
at UC Berkeley. It’s primary purpose is to offer additional practice problems
and walkthroughs, as a supplement to Professor DeNero’s textbook Composing
Programs (composingprograms.com).

0.1.1 Structure

Each chapter is structured so that this book can be read on its own (with
sufficient Python knowledge). A minimal guide at the beginning of each section
covers essential materials and misconceptions but does not provide a comprehensive
overview. Each guide is then followed by at least 5 practice problems, first
provided as just problem statements, then provided as templates, as they are
on CS61A exams.

0.1.2 Breakdown

For the most part, guides are simply summaries of select chapters from Composing
Programs.
For more difficult parts of the course, guides may be accompanied by breakdowns
and analyses of problem types that were otherwise not introduced in the course.
These additional ”Analysis” sections will attempt to provide a more regimented
approach to solving complex problems.
Except for the first problem of each section, problems are written at about
exam-level, err’ing on the side of difficulty where needed. All problems have have
accompanying, working scripts at github.com/alvinwan/abcSICP and have
been tested using UniExpect, a doctest-esque module for testing in languages
like Scheme and SQL (github.com/alvinwan/UniExpect).

0.1.3 Resources

Additional resources, including 3 practice exams, 10 quizzes, and other random
worksheets and problems are posted online at alvinwan.com/cs61a.

Page 4

Chapter 1

Higher-Order Functions

1.1 Guide

Higher-order functions manifest themselves in three ways: functions as arguments,
nested definitions, and functions as return values.

For this guide’s original, full text, see Composing Programs 1.6.

1.1.1 Functions as Arguments

Using functions as arguments allows us to abstract functionality. In the following
example, an evaluator accepts the function representation of a polynomial, and
evaluates that polynomial for each x in a list.

1 def evaluator(polynomial, xs=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)):

2 """Evaluates a polynomial at all xs"""

3 return [(x, polynomial(x)) for x in xs]

This allows us to grab the coordinates of any polynomial written as a function
of x.

1 y1 = lambda x: 0.5*x + 3 # line

2 y2 = lambda x: (x - 3)**2 + 1 # parabola

3 y3 = lambda x: x**4 + 2*x**2 - 3 # random polynomial

We now have a simple way of evaluating any polynomial at an arbitrary n points,
where n=len(xs).

1.1.2 Nested Definitions

Functions defined within functions allow us to abstract away a function’s inner
workings, hiding it from the global frame. In the next chapter, we will see that
nested definitions additionally allow us to take advantage of recursion without
sacrificing code cleanliness (i.e., defining too many functions in the global frame).

5

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

The following is a näıve implementation of selection sort.

1 def selection_sort(lst):

2 """Sorts a list of comparables in-place."""

3

4 def min_index(lst, start):

5 """Returns index of minimum value after the index ’start’."""

6 assert 0 <= start < len(lst), ’Invalid index’

7 j, biggest, k = start, lst[start], start

8 while k < len(lst):

9 if lst[k] > biggest:

10 j, biggest = k, lst[k]

11 k += 1

12 return k

13

14 for i, n in enumerate(lst):

15 j = min_index(lst, i)

16 lst[i], lst[j] = lst[j], lst[i]

By defining min index inside of selection sort, we avoid globally defining a
function that is specific to selection sort. More importantly, by working in
a smaller namespace (within the scope of selection sort), we lessen the risk
of overriding an existing function with different functionality.

1.1.3 Functions as Return Values

Functions as return values allow us to generate highly similar and marginally
different functions. Take all fifth-degree polynomials, for example. Each naturally
follows the same construct ax5 +bx4 +cx3 +dx2 +ex+f . Programming a series
of lambda functions that each take nearly-identical forms would be tedious.

1 y1 = lambda x: 5*x**5 + 52*x**4 + 7*x**3 + 2*x**2 + 3*x + 7

2 y2 = lambda x: 10*x**5 + 7*x**4 + 3*x**3 + 11*x**2 + 2*x + 3

3 y3 = lambda x: 3*x**5 + 6*x**4 + 22*x**3 + 2*x**2 + 41*x + 2

4 ...

Instead, we can define a deg5 generator, which takes 6 arguments: 1 for each
coefficient and 1 additional for the extra constant.

1 def deg5poly(a, b, c, d, e, f):

2 """Returns a polynomial as a function with one parameter x."""

3 return lambda x: a*x**5 + b*x**4 + c*x**3 + d*x**2 + e*x + f

Now, we can shorten our polynomial definitions.

1 y1 = deg5poly(5, 52, 7, 2, 3, 7)

2 y2 = deg5poly(10, 7, 3, 11, 2, 3)

3 y3 = deg5poly(3, 6, 22, 2, 41, 2)

4 ...

Page 6

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

1.2 Problems

1. Warm up Without using for, while, or slicing, reverse a list. You should
use the built-in map function.

2. Replace each digit in a number with its distance – in digits – from the first
1 to come after it. Any number that does not have a 1 after it will be
replaced by a 0, and two digits side-by-side have a distance of 1. Assume
there is no distance greater than 9.

3. Write a function next look and say(n) which returns the next number
of the ”look-and-say” sequence given the previous term n. The first term
is 1. To generate a term in the sequence, look at the previous term and
read it. 1121 is ”two 1s one 2 one 1”, which translates into 211211.

4. Crypto is a puzzle game, where players receive a total and a series of
numbers. Assume we can only use multiply, divide, add, and subtract, and
that order of operations doesn’t apply (’4+4/2’=4). Write crypto solver,
which finds all possible permutations of mathematical operations that will
yield the total. For example, given nums=[6, 2, 2], total=10, return
’6+2+2’, ’6*2-2’. Order of the results does not matter.

5. Write a function that replaces each element of a list with the sum of the
two largest numbers after it. Use -1 if there are not enough numbers.

6. Write a function matrix product that multiplies two matrices A and B

together. If matrix multiplication is impossible, raise an error. Recall
that the number of columns in the first matrix must equal the number of
rows in the second matrix.

Page 7

Chapter 2

Recursion

2.1 Guide

Recursive functions are functions that invoke themselves, either indirectly or
directly. Before writing any recursive function, ask yourself the following three
questions:

1. What is the base case?

2. How does the recursive call break down the problem into simpler parts?

3. What is the recursive case?

For this guide’s original, full text, see Composing Programs 1.7.

2.1.1 Mutual Recursion

Mutual recursion occurs when two functions recursively call each other. This
can be useful for maintaining abstraction barriers inside of a program.
Consider a program that, given the amount of time in a class period, prints the
interaction between a teacher and a student, up until the bell.

1 def ask(t):

2 """Student takes 3 seconds to ask a question."""

3 if t <= 0:

4 print(’Ask me after class!’)

5 print(’Asking...’)

6 answer(t-3)

7

8 def answer(t):

9 """Teacher takes 20 seconds to answer."""

10 if t <= 0:

11 print(’Stay after for a full explanation!’)

12 print(’Answering...’)

13 ask(t-20)

Notice that these function abstract away the notion of asking from the notion
of answering.

8

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

2.1.2 Tree Recursion

Tree recursion occurs when a function calls itself more than once. This results
in a ”tree” of function calls, where each function call branches into a few more.
We can benefit from this type recursion most when finding permutations or
combinations.
Consider a staircase with n steps. We can choose to take 1 or 2 steps at a time.
How many ways can we walk these stairs?

1 def stairs(n):

2 """Number of ways to walk n steps, if you can choose to take 1 or 2

3 steps at a time"""

4 if n <= 2:

5 return n

6 return stairs(n-2) + stairs(n-1)

Let us break down this problem by answering the three questions we ask ourselves
for any recursion problem.

1. What is the base case? We consider n=0, n=1, or n=2 steps. If n=0,
there are 0 ways we can walk the stairs. If n=1, we can only walk it one
way: take the step. If n=2, we have two ways: take one step at a time, or
take both at once. Combining all of these base cases, it just so happens
that if n<=2, we have exactly n ways of walking these steps.

2. How does the recursive call break down the problem into simpler
parts? Let us consider n=3. In this case, we know that our last move
covers either 2 steps or 1. As a consequence, we know that all the ways
to traverse 3 steps is all the ways to traverse 1 step and all the ways to
traverse 2 steps (3-2 and 3-1, respectively). Our recursive case is the sum
of all the ways to traverse 3-1 and 3-2 steps.

3. What is the recursive case? This generalizes fairly well. For any n

steps, we sum all the ways to traverse n-2 and n-1 steps. As it turns out,
we have a function that tells us how many ways to traverse n steps: stairs,
the very function we’re writing. So, our recursive call is stairs(n-1) +

stairs(n-2).

2.1.3 Cascade

The cascade is a visualization of recursive calls.

1 def cascade(n, depth=0):

2 """Visualization for cascade"""

3 if n > 0:

4 print(’ ’ * depth, ’cascade({})’.format(n))

5 cascade(n-1, depth+1)

6 print(’ ’ * depth, ’return’)

Running cascade(5), for example, will yield a cascade of depth 5. In the
following Analysis section of chapter 3, we will discuss how to take advantage
of this visualization.

Page 9

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

2.2 Analysis

2.2.1 How do I even start?

Recursion questions are generally and initially daunting. The question is: How
do I even start? First, answer the three questions specified in the introduction
section of this chapter.

1. What is the base case?

2. How does the recursive call break down the problem into simpler parts?

3. What is the recursive case?

If the recursive case is particularly complex, try additionally asking yourself the
following questions. These questions do not cover all possibilities with recursion
but may get you started in the right direction.

1. What data does each recursive call need? Is the question asking for
distance? The index of a particular value? Its depth? Determine what
data each recursive call requires to complete its task. If the function is
only responsible for changing values, think about what the function needs
to compute that new value.

2. Which leg of the cascade? Think about which direction data is moving.
This can be a particularly useful tool for visualizing recursion. See section
3.2.1 for more information about the cascade.

3. What type of recursion is this? Is this mutual or tree recursion? Is it
”standard” recursion? Determine if you can break one recursive call into
smaller subsets of the same problem. Consider if you’re dealing with all
combinations or permutations of a sequence. If either is true, the problem
could benefit from tree recursion.

Make sure to take time addressing some if not all of these questions, before
coding. Using your responses to the above questions, you should have some
idea of how the problem works. If not, try guessing and checking. Ultimately,
writing and testing code is preferable to sitting and staring.

Page 10

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

2.3 Problems

1. Warm up Write stairs(n), which gives the number of ways to take n

steps, given that at each step, you can choose to take 1, 2, or 3 steps.
stairs(5) = 13, stairs(10) = 274

2. Write stairs(n, k), which gives the number of ways to take n steps,
given that at each step, you can choose to take 1, 2, ... k-2, k-1 or k steps.
kstairs(5, 2) = 8, stairs(5, 5) = 16, stairs(10, 5) = 464

3. Compute the determinant of a matrix A using co-factor expansion. You
may not assume a fixed size for the matrix; A may be any n x n matrix
where n ∈ N (i.e., where n is a natural number).

4. Write a function permutations(lst) that returns a list of all permutations
of the provided lst.

5. Given a tuple of numbers, where each number represents the size of a slice
of pie, distribute the slices among 2 people as evenly as possible. (i.e.,
minimizing the difference between the sums of two sets of values).

Page 11

Chapter 3

Data Structures

3.1 Guide

This guide will only explore two data structures: Linked Lists and Trees. In
here, we will use conventions from Composing Programs.

For this guide’s original, full text, see Composing Programs 2.9.

3.1.1 Linked Lists

Linked lists are comprised of a value (called first) and a rest pointer. rest

will point to either Link.empty, denoting the end of a linked list, or to the head
of a linked list. Consider the following definition of a Link.

1 class Link:

2 """Linked list with a value (first) and a next pointer (rest)"""

3 empty = ()

4 def __init__(self, first, rest=empty):

5 self.first = first

6 self.rest = rest

List construction is also recursive. Consider the following piece of code that
generates a linked list of the first 5 numbers in the naturals. Each link is passed
into the constructor of the previous link as rest: Link(1, Link(2, Link(3,

Link(4, Link(5)))))

We can traverse this list either iteratively or recursively. The following is a
commonly-used iterative approach to linked list traversal.

1 def print_list_iter(link):

2 while link.rest is not Link.empty:

3 print(link.first)

4 naturals = link.rest

The following is a commonly-used recursive approach to linked list traversal.

1 def print_list_rec(link):

12

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

2 if link is Link.empty:

3 return

4 print(link.first)

5 return print_list_rec(link.rest)

3.1.2 Trees

Trees are similarly comprised of a value (called entry) and a list of branches.
branches is either empty, denoting a leaf (a tree without branches), or a list of
trees. Consider the following definition of a Tree.

1 class Tree:

2 """Tree with a value (entry) and a list of subtrees (branches)"""

3 def __init__(self, entry, branches=()):

4 self.entry = entry

5 self.branches = branches

Just like list construction, tree construction is recursive. Consider the following
piece of code that generates a tree containing the first 5 natural numbers:
Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3)])

We can traverse this tree either iteratively or recursively. Note that the two
iterative traversals and their associated data structures discussed below are outside
the scope of CS61A. The iterative approach may take one of two forms: depth-first
traversal or breadth-first traversal. With depth-first traversal, use a stack, which
first removes the last item added to the stack. With breadth-first traversal, use
a queue, which first removes the first item added to the stack.

1 def dfs(tree):

2 """Traverses a tree depth-first, using a stack."""

3 trees = [tree]

4 while trees:

5 tree = trees.pop() # pop from the end

6 print(tree.entry)

7 trees.extend(tree.branches) # tree.branches[::-1] to match dfs_rec

8

9 def bfs(tree):

10 """Traverses a tree breadth-first, using a queue."""

11 trees = [tree]

12 while trees:

13 tree = trees.pop(0) # pop from the beginning

14 print(tree.entry)

15 trees.extend(tree.branches)

The following is a commonly-used recursive approach to tree traversal. Notice
that the recursive approach shown here is a depth-first traversal.

1 def dfs_rec(tree):

2 print(tree.entry)

3 return [dfs_rec(subtree) for subtree in tree.branches]

Page 13

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

3.2 Analysis

3.2.1 Which leg of the cascade?

First, let us remind ourselves of the cascade function from section 2.1.3. This
function will generate the cascading effect.

1 def cascade(n, depth=0):

2 """Visualization for cascade"""

3 if n > 0:

4 print(’ ’ * depth, ’cascade({})’.format(n))

5 cascade(n-1, depth+1)

6 print(’ ’ * depth, ’return’)

Then, let us see the cascade. This is the output of cascade using cascade(3).
Notice the sideways v-shape.

1 cascade(3) # deeper

2 cascade(2) # deeper

3 cascade(1) # deepest!

4 return # rising

5 return # rising

6 return # made it out!

You’ll notice that on the descending leg, each function call brings us deeper
into the stack of frames. On the ascending leg, each return brings us one step
higher, decreasing depth. These are not formal terms that describe the recursion
process; it is simply jargon we can use to discuss this effect.

In general, the descending leg is associated with progression deeper into a data
structure, and the ascending leg is associated with the return back. For data
structures that we’ve explored, this means the following:

• Linked List The descending leg progresses along a linked list, in the
forward direction. We could take advantage of this leg if we were, for
example, counting the distance of a node from the head of the linked list.
The ascending leg progresses back left, in the reverse direction. We could
take advantage of this leg if we were, for example, keeping track of the
largest value after a node.

• Tree The descending leg progresses downward, deeper into the tree with
each recursive call. We could use this leg if, for example, we were computing
each node’s depth. The ascending leg progresses upwards, getting shallower
with each return. We could use this leg if, for example, we were calculating
the closest, descendant leaf to a given parent node.

To take advantage of the descending leg, add parameters to your helper function
to pass data forwards, or modify your data structure before the recursive call. To
take advantage of the ascending leg, add return values to your helper function
to pass data backwards, or modify your data structure after the recursive call.

Page 14

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

3.2.2 Patterns for Recursion

Linked list and tree traversals actually reduce the problem of recursion by
answering one of three questions for us: How does the recursive call break down
the problem into simpler parts? With only a few exceptions, we can generally
assume the following is true about each data structure.

1. For linked lists, we break down a problem into the current link and the
rest of the linked list. Each recursive call processes only the current link
(first) and reduces the linked list by a link at a time. The link’s rest is
left to the recursive call.

2. For trees, we break down a problem into the current node and its subtrees.
Each recursive call processes only the current link (entry) and reduces the
tree by a node at a time. The tree’s branches are left to the recursive call.

Sometimes, our base case may also be straightforward. Given that we’re traversing
the data structure one node at a time and traversing only one level deeper each
time, the base case is simply if we’ve reached the end the data structure.

1. For a linked list, our base case is if link is Link.empty.

2. For a tree, our base case is if not tree.branches.

There are other base cases we may need to consider, if we aren’t progressing
so simply through the data structure. For example, if we’re traversing multiple
nodes at once, we may need to add checks for None. For example, if we’re
jumping three nodes at a time, we will need to check that node.next and
node.next.next are not None. If we do not add this check, attempting to
access node.next.next.next may error.

Page 15

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

3.3 Problems

3.3.1 Linked Lists

1. Warm up Compute the dot product of two vectors u and v. If the two
linked lists, have different length, raise an error.

2. Write a function sum reverse(lst), which sets each node’s value to be
the sum of its value and that of all the nodes after it. For example, [1, 2,
3, 4, 5, 6] becomes [21, 20, 18, 15, 11, 6].

3. Rotate a linked list to the left k times. For example, rotate left([1, 2,

3, 4, 5], 2) would give [3, 4, 5, 1, 2]. Assume that k is less than
the length of the linked list.

4. Write average(lst, k). To implement this: conceptually divide the
linked list into groups of k until there are no more or not enough nodes.
Update each node to become the average of the group it’s in. For k = 3,
for example, [1, 2, 3, 4, 5] becomes [2, 2, 2, 4.5, 4.5].

5. Check if a linked list represents a palindrome. Each link in the linked
list contains one character in the candidate palindrome. Recall that a
palindrome is any word that is read the same forwards as it is backwards.

3.3.2 Trees

1. Warm up Write map tree(f, t), which applies a function f to every
other level of a tree t. Apply f to the root, and do not modify the
original.

2. Write filter tree, which returns a new tree containing only nodes that
pass the filter. To simplify the problem, assume that f and t are constructed
such that the root of the provided t always passes the filter f. The
branches of a deleted node will be pushed up a level.

3. Write min leaf, which creates a new tree, where each node’s value is its
distance to the closest child leaf.

4. Write a function sum reverse tree(t), which sets each node’s value to
be the sum of its value and that of all its branches. Modify the original
tree, in place.

5. Hard Solve a maze, given a stringified maze, an optional start(default
(1, 1)), an optional end (default to the bottom right), and an optional
function moves that returns all possible moves given an x, y (default up,
down, right, left). Your solution does not need to be optimized, and return
the original maze if no path exists.

Page 16

Chapter 4

Object-Oriented
Programming

4.1 Guide

Object-oriented programming is a paradigm for computer programming that
allows us to abstract data from its use. More specifically, it allows us to model
real-world objects.

For this guide’s original, full text, see Composing Programs 2.5-2.7.

4.1.1 Classes

Classes are reusable and extensible templates. We use the following syntax to
define a class:

1 class <name>:

2 <body>

With this syntax in mind, consider the following example of a class, No2Pencil.
By convention, our class name is camel cased, meaning every word is capitalized.

1 class No2Pencil:

2 """a brand new pencil"""

3 led_weight = 2 # class attribute

4 def __init__(self, length):

5 self.length = length # instance attribute

We can now create instances of this No2Pencil class. Note the distinction
between a class (a template) and an instance (an object made from that template).
Whereas there is only one class for all No2Pencils, there are many No2Pencil

instances, namely pencil1 and pencil2 in the code below.

1 pencil1 = No2Pencil(5)

2 pencil2 = No2Pencil(5)

17

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

4.1.2 Attributes

Consider the definition of No2Pencil on the last page. Each of these instances
has instance attributes, or properties that are specific to that instance. An
example would include length. We know that each pencil should have its own
length, as using one pencil should not affect the length of another pencil. Just
as instances have instance attributes, classes may have class attributes. These
are properties that all instances of a class would most likely share, such as
led weight. Since the No2Pencil class is for all No. 2 pencils, it would make
sense that No2Pencil has a class attribute led weight = 2.
To set or get attributes, we use dot notation, for both classes and instances.
To get an attribute, use <expression> . <name>. To assign an attribute, use
<expression> . <name> = <value>.

1 # set attribute

2 No2Pencil.led_weight = 3

3 pencil1.weight -= 1

4

5 # get attribute

6 print(No2Pencil.led_weight) # 3

7 print(pencil1.length) # 4

Remember that all dot expressions are evaluated in the following three steps.

1. Evaluate the expression, left of the dot.

2. Look for an instance attribute name. If found, return the associated value.

3. Else, look for a class attribute name. If found, return the associated value.

4.1.3 Inheritance

We can define a subclass, by using the following syntax.

1 class <Name>(<Parent>):

2 <body>

A subclass will inherit all class attributes and methods from the parent class,
unless those attributes or methods are overridden in the subclass.

4.1.4 Nonlocal

An alternative to OOP to maintain state, nonlocal statements allow nested
functions to re-assign variables in the parent function. Note that nonlocal

is only needed for assignment. For impure functions that perform in-place
modifications, such as append or remove, nonlocal is not needed. Remember
that nonlocal and OOP are two different ways to maintain state.

1 def parent(n):

2 def child():

3 nonlocal n

4 n = 5

Page 18

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

4.2 Problems

All of the following questions pertain to nonlocal statements. OOP is more
so a paradigm to be comfortable with and less a type of programming tool to be
tested.

1. Warm up Write hailstone chicken(i), which returns a function hailstone(start)

that prints the hailstone sequence for a given start. For every ith number
n of the hailstone sequence, print a string with ’chicken’ repeated n times
instead of n itself. For a hailstone sequence, if the number is even, divide
it by 2. If the number is odd, multiply by 3 and add 1. For h(8) where
h=hailstone chicken(3), print 8, 4, chickenchicken, and 1.

2. Write fib range(x, y), which returns fib. In turn, fib returns the
next number in a series of fibonacci numbers, starting from x and ending
with y, excluding y. Raise a StopIteration exception if there are no
more numbers in the sequence. For example, if fib = fib range(2, 21),
calling fib() 5 times would return 2, 3, 5, 8, and 13. A 5th function call
would raise a StopIteration exception. Note that 21 is not included.

3. Without using nonlocal, write create complex, which returns a function
complex(a=None, b=None), and initializes the complex number to 0. complex(a,
b) adds a complex number a + bi to the complex number, and complex()

returns a stringified form of the complex.

4. Write call depth(), which returns two function f and g. g returns
the number of times (n), that f was called, multiplied by the maximum
”depth” d of a call expression. For g(), d=1 and f wasn’t called so
n=0. That makes d*n=0. For g(f(f())), d=3 and n=2, so d*n=6. For
g(f(f(), f(f()))), d=4, n=4, so d*n=16. (Notice that f() has d=1,
so f(f(), f(f())) is f(1, 2) and thus, d=max(1, 2) + 1= 3.)

5. Given a dictionary rules mapping integers i to strings s, fizzbuzzes(rules)
returns a function fizzbuzz(sequence) that prints the sequence with a
few modifications: apply all rules from the provided rules, where each
ith term is replaced with the corresponding s. Higher values of i take
precedence over lower values of i.

Page 19

Chapter 5

Implicit Sequences

5.1 Guide

Implicit sequences allow us to take advantage of lazy computation and model
infinite sequences. In this guide, we will discuss the three implicit sequences
covered in Composing Programs: iterators, generators, and streams. The first
two are written in Python, and the last is writte in Scheme.

For this guide’s original, full text, see Composing Programs 4.2.

5.1.1 Iterator

An iterator allows us to sequentially access a series. In Python, iterators must
implement a next method, which returns the next element of a sequence
when invoked. Below is a sample iterator that returns the hailstone sequence,
given a start value n.

1 def HailstoneIter:

2 """Generates the hailstone sequence, starting from start."""

3 def __iter__(self, n):

4 self.n = n

5

6 def __next__(self):

7 n = self.n

8 if n == 1:

9 raise StopIteration # terminate iterator if reached end

10 self.n = 3*n+1 if n%2 else n//2

11 return n

To use an iterator, instantiate an iterator and use Python’s built-in next(<iterator>).

1 hailstone = HailstoneIter(4)

2 next(hailstone) # 4

3 next(hailstone) # 2

4 next(hailstone) # 1

5 next(hailstone) # StopIteration error

20

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

An iterable is any object that can be iterated over. This means that a single
iterable can have many associated iterators, with each iterator representing an
iteration through the iterable. Iterables must implement the iter (<iterator>)

method, which returns an iterable. A hailstone iterable would resemble the
following.

1 def HailstoneIter:

2 ...

3 def __iter__(self):

4 return self

To use an iterable, instantiate the iterable and use Python’s built-in iter(<iterable>).

1 hailstone = iter(Hailstone(4)) # hailstone becomes iterator

2 next(hailstone) # 4, just like iterator

3 ...

In the above code, iter just returns self, since HailstoneIter is itself an
iterator. Since for loops act on iterables, we can now use for loops with
custom classes.

1 for n in Hailstone(4):

2 print(n)

5.1.2 Generator

A generator is a special type of iterator, returned by a generator function. Using
the yield statement anywhere inside of a function will automatically make it
a generator when called. yield statements will put a function on pause, and
return that value.

1 def hailstone_gen(n):

2 while n != 1:

3 yield n

4 n = 3*n+1 if n%2 else n//2

5.1.3 Stream

Scheme does not support iterators or generators. Instead, scheme uses streams,
which can ”only” represent infinite sequences. Write the stream definition as
though you were constructing a normal list, then substitute cons for cons-stream.
When accessing the stream, use cdr-stream instead of cdr. All other properties
of the scheme list remain the same. The following is a stream of the positive,
even numbers.

1 (define (stream n)

2 (cons-stream n (+ n 2))

3 (define pos_evens (stream 2))

Page 21

Discrete Mathematics and Probability Theory aaalv.in/abcDMPT

5.2 Problems

5.2.1 Iterators and Generators

1. Warm up Write an iterable that iterates over every other of another
sequence (iterator or generator).

2. Write alt sequences(seq1, seq2, seq3, order), which takes three sequences
(generators or iterators) and a list indicating the order with which the
sequences are interpolated. If order is [1, 3, 2], seq1 is the naturals,
seq2 is the naturals starting from 2, and seq3 is the naturals starting
from 3, the first three elements of the alt sequences generator would be
1, 3, 2.

3. Write combine, which takes two sequences (generators or iterators) and
a combiner function f. The ith term of the combine generator is the
ith terms of both seq0 and seq1 combined by function f. The length of
combiner should be the longer of the two sequences. The shorter sequence
is padded with 0s.

4. Write a function kdeepgen(k, lst) which takes an integer k and a list of
values to yield lst. kdeepgen returns a generator that has k ’depth’ and
yields all elements of the provided lst. We define the standard generator
function, which requires only one for loop to iterate over, to have depth
1. A generator with depth 2 would require two for loops, with one nested
inside the other. A generator with depth k would require k for loops.

5. Write a function flattens(gen) that flattens a generator with ’depth’,
returning a generator with depth 1. See the previous question for an
explanation of depth. You may use isinstance(types.GeneratorType)

to test if a variable is a generator. (import types first)

5.2.2 Streams

1. Warm up Write a stream that contains over every other term of another
stream.

2. For two streams stream1 and stream2, combine the first term of stream1
with the second term of stream2 using a combiner function f. Calling
(combiner naturals naturals (lambda (x) (+ x x))) should then give
3 (1+2), 6 (2+4), 9 (3+6) etc.

3. Write alt sequences(stream1, stream2, stream3, order), which takes
three streams and a list indicating the order with which the streams are
interpolated. If order is (1 3 2), stream1 is the naturals, stream2 is the
naturals starting from 2, and stream3 is the naturals starting from 3, the
first three elements of the alt-sequences stream would be 1, 3, 2.

Page 22

