
Lecture 7 : Subdifferentiable Method

EE227C . Lecturer: Professor Martin Wainwright . Scribe: Alvin Wan

Let us now discuss subgradients. We desire the following subgradient method, for
functions that are not differentiable but subdifferentiable.

xl+1 = xl − αgl

where gl ∈ ∂f(xl) and ∂f(x) = {g ∈ Rd|f(y) ≥ f(x) + 〈g, y − x〉},∀y ∈ Rd. We’re
allowing this algorithm to pick any choice from the subdifferentiable. This is slightly
different from taking the gradient. Here’s an intuition for why we need to make a
change right away.

Take this example, demonstrating that step size matters, f(x) = |x|.

∂|x| =


+1 if x > 0

−1 if x < 0

[+1,−1] if x = 0

Suppose we were at xl = 1
2
, then gl = 1. However, imagine α = 1, then we have

xl+1 = −1
2
, where α = 1, gl = −1, we will oscillate infinitely. Even with a smaller

step size, we can play the same game. Unlike previously, no fixed α will work, so we
will need time-varying step sizes. Let {αl} be a sequence of step sizes that approaches
0. We showed the sequence of costs is non-increasing. Here, we will instead average
our iterates and prove statements using sums. These sums will be built in a special
way. In this case, we sum based on step sizes.

1 Proof for Subdifferentiable Method

Theorem: Say C ⊂ Rd which is closed, convex f : Rd → R and L-Lipschitz ‖f(x)−
f(y)‖ ≤ L‖x− y‖2,∀x, y. For instance, f(x) = |x| above is 1-Lipschitz. This is true
iff ‖g‖2 ≤ L,∀g ∈ ∂f(x). Then,
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f(

∑t
l=1 α

lxl∑t
l=1 α

l
)− f(x∗) ≤ ‖x

l − x∗‖22
2
∑t

l=1 α
l

+
L2

2

∑t
l=1(α

l)2∑t
l=1 α

l

The first term in the bound considers the distance from xl and x∗, divided by the
running sum of step sizes. The second time considers the ratio between the sum of
squares and the running sum. We want an infinite travel condition. This means as
step sizes approach infinity, the steps should diverge. If not, our terms won’t approach
the optimal. The norm of the gradients is bounded, so consider: what is the largest
amount we can ever move in space? It is the running sum of αl. If the running sum
doesn’t diverge and approaches a finite sum, our adversary can start us some place
farther than that finite sum from the optimal. We can achieve the convergence rate
1√
t
. So, let’s talk about some step sizes.

Consider ‖xl − x∗‖22 ≤ R2 and X̂T =
∑t

l=1 α
lxl∑t

l=1 α
l .

1.1 Fixed iteration

Optimize for a fixed iteration number T . Fixed step size. α = R
L
√
T

. Then,

x̂T − f(x∗) ≤ R2

2TR/L
√
T

+
L2

2

TR2/L2T

TR/L
√
T

=
RL√
T

One is increasing and one is decreasing, so we picked a step size that balances the
two terms. How would we set T? If we have some pre-prescribed tolerance ε, then
simply solve RL√

T
= ε to get T = (RL

ε
)2. If you know something about L, the quality of

your starting point, and your tolerance for error, you can then compute the T . This
algorithm is the slowest we’ve seen so far, but it’s optimal.

1.2 General guarantee

For a general t guarantee, we pay a logarithmic price. Take αl = R
L
√
l
, where l =

1, 2, . . . . Then,
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t∑
l=1

αl ≥ t
R

L
√
t

=
R

L

√
t

What’s interesting is that we don’t have a finite sum
∑T

l=1(α
l)2. This is diverging

but only logarithmicly so.

T∑
l=1

(αl)2 ≤ R2

L2
(1 + log t)

Hence, f(x̂)− f(x∗) ≤ RL(1+log t)√
t

.

1.3 Generalized Update

Let’s analyze xl+1 = ΠC(xl − αlgl). Define yl+1 = xl − αlgl, xl+1 = ΠC(yl+1). This is
effectively the same proof we did for projected gradient methods, when we just had
weak convexity. We will get a bound on the sub-optimality of xl and then average
using convexity. What’s important is that αl∑t

l=1 α
j sums to 1, so we can apply Jensen’s

inequality. Now, by convexity,

f(xl)− f(x∗) ≤ 〈gl, xl − x∗〉 =
1

αl
〈xl − yl+1, xl − x∗〉

Now, we use a polarization identity - a fancy name for an inequality of the form
〈u, v〉 = 1

2
(‖u‖22 + ‖v‖22 − ‖u− v‖22).

f(xl)− f(x∗) ≤ 〈gl, xl − x∗〉 ≤ 1

2αl
(‖xl − yl+1‖22 + ‖xl − x∗‖22 − ‖yl+1 − x∗‖22)

Now, we have the following by non-convexity. In other words, negate both sides, and
we get −‖xl+1 − x∗‖2 ≥ −‖yl+1 − x∗‖2.

‖xl+1 − x∗‖2 = ‖ΠC(yl+1)− ΠC(x∗)‖2 ≤ ‖yl+1 − x∗‖2
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By our Lipschitz condition, we also have:

‖xl − yl+1‖22 = (αl)2‖gl‖22 ≤ (αl)2L2

We’ve thus proved the following, by plugging in:

αl(f(xl − x∗)) ≤ 1

2
(‖xl − x∗‖22 − ‖xl+1 − x∗‖22) +

(αl)2L2

2

By Jensen’s and convexity, we have our claim.

f(
T∑
l=1

αl∑T
j=1 α

j
xl)− f(x∗) ≤ 1∑T

j=1 α
j

T∑
l=1

αl(f(xl)− f(x∗))

1.4 Danskin’s Theorem

Take f(x) = maxz∈Z φ(x, z) for φ : Rd × Rm → R with Z ⊂ Rm compact and φ
continuous. We have x→ φ(x, z) convex and ∇xφ(x, z) exists, continuous in z. Since
this is convex, the subdifferentiable is non-empty. This theorem states that

∂f(x) = conv(∇xφ(x, z∗)|z∗ ∈ argmaxz∈Zφ(x, z))

Example We can rewrite f(x) = |x| = max|z|≤1 xz, where φ(x, z) = xz. This gives
us

∂f(x) = conv(z∗|z∗ ∈ argmax|z|≤1argmaxzx)

When is this argmax unique? When x is strictly non-zero. What if x is 0?

Example f(x) = ‖x‖p, p ∈ (1,∞)

Example f(x) = ‖x‖op = max{σ1(x), . . . , σd(x)}
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