
Lecture 5 : Projections

EE227C . Lecturer: Professor Martin Wainwright . Scribe: Alvin Wan

Up until now, we have seen convergence rates of unconstrained gradient descent. Now,
we consider a constrained minimization problem where the set of constraints C ∈ Rd

is convex and closed.

min
x∈C

f(x)

1 Objective Function

Consider some x0 ∈ C. It might be that our gradient takes us outside of C.

x0 = x0 − α∇f(x0)

The simplest thing we can do is to project the point back onto the set, to get an
x1 ∈ C.

x1 = Πe(x
0 − α∇f(x0))

where Π is the projection onto C. More explicitly, we are looking for the following.

argminx∈C‖x− (x0 − α∇f(x0))‖2

This algorithm is called projected gradient descent. With extra projection prop-
erties and geometry, we can develop more understanding for this constrained version
of gradient descent. Is this problem hard? If C is very complex - perhaps a polytope
with many linear constraints - the problem may be too difficult. The answer is thus
dependent on C.
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2 Background

Lemma: Say f is convex and differentiable. Then

x∗ ∈ argminx∈Cf(x)↔ 〈∇f(x∗), z − x〉 ≥ 0

Without constraints, we’re simply looking for a point with a gradient of zero. The
above is the natural generalization with a constraint set C. Consider the geometry
of this optimality condition. Take the optimal value x∗ to be at the boundary of C
and a gradient that points out of C. The condition gives us information about the
gradient vector and any other vector pointing inwards. In effect, the condition tells
us that we cannot find any feasible descent direction; equivalently, the angle between
the descent direction −∇f(x∗) and feasible direction z − x∗ is at least 90 degrees.

What happens if the above condition holds for some x∗ ∈ int(C)? We’ll see that this
actually implies ∇f(x∗) = 0. To some degree, this means your constraints had no
effect.

3 Projection Operator

To ensure that the objective function makes sense, we have to check that there exists
a unique solution. Take the Euclidean projection on C, a closed, convex subset of
Rd. Consider minx∈C ‖y − x‖22 for some fixed y ∈ Rd. Examine ‖y − x‖22, we see the
function value diverges or goes to infinity. We can also consider sub-level sets of g
(x ∈ Rd|g(x) ≤ γ). Compactness and closedness implies existence. Strict convexity
implies uniqueness. So, the objective function makes sense. We can then define an
operator.

Hence: Πe : Rd → C, where Πe(y) = argminx∈C‖x− y‖22 is well-defined.

In general, the projection is not linear. However, it still has a few nice properties,
characterized by the following inequalities:

〈ΠC(y)− y, z − ΠC(y)〉 ≥ 0,∀z ∈ C

The angle between the (a) difference between the projection ΠC(y) and the original
point y and (b) any feasible direction is non-negative. This characterizes, in short,
the angle between those two vectors. To prove this, we see ΠC(y)− y = ∇f(ΠC(y)).
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Consider a linear subspace C and the projection of some y on C, ΠC(y). This lemma
is saying that you can move along any direction in C. In R2 with C as a line, we have
two possible directions along C from ΠC(y), both of which form angles with y−ΠC(y)
that total to 180. This means both are 90 and thus y − ΠC(y) is orthogonal to C.

〈ΠC(y)− y, z − ΠC(y)〉 = 0

The projection also has one more important property

Consider the constraint set C and two points outside of C, y, ỹ ∈ Rd. We are inter-
ested in the difference between the projections ΠC(y) − ΠC(ỹ) compared to the dif-
ference between the original points y− ỹ. We claim the projection is non-expansive
or that

‖ΠC(y)− ΠC(ỹ)‖2 ≤ ‖y − ỹ‖2

If y, ỹ ∈ C, then the above inequality is an equality. Note that this is not true
in general if C is not convex. For example, take the Euclidean sphere S = {x ∈
Rd|‖x‖2 = 1}, which is comprised of only the ”shell” of a ball. Consider two points
in the sphere, and their projection onto the shell. Note that the distance between
the projections can be greater than the distance between the original points. This
matters in practice. Often, when solving for eigenvalues, which is a quadratic program
over a sphere, we cannot assume that algorithms such as the power method are non-
expansive.

4 Examples

Consider some examples of projections.

(a) O+ = {x ∈ Rd|xj ≥ 0,∀j = 1 . . . d}. This, intuitively, clips the function ΠO+(y) =
max{0, y} component-wise.

(b) Box [0, 1]d = {x ∈ Rd|‖x‖∞ ≤ 1} where

Π[0,1]d(y) =


0 if y ≤ 0

y if y ∈ [0, 1]

1 if y ≥ 1
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(c) Kite C = {x ∈ Rd|‖x‖1 ≤ R} forces a sparse solution. You may believe that
a large set of features can be reduced to a small number of important features.
This is called soft sparsity. We can show that

[Πe(y)]j = sgn(yi) max{0, ‖yj‖ − λ}

, where λ is chosen such that ΠC(y) ≤ 1. this is called soft thresholding. What
does soft thresholding do? Define a mapping that takes some real-valued u and
gives a continuous function. Between [−λ, λ], the function is constant at 0. After
λ, it slopes up up, and less than −λ, it also slopes up.

Tλ(u) = sgn(u) max{0, |u| − λ}

This function is non-expansive. On the other hand, hard-thresholding is discon-
tinuous

Hλ(u) =

{
0 if |u| ≤ λ

u otherwise

(d) Matrix problems Sd×d+ = {X ∈ Rd×d|X = XT , X ≥ 0}. Consider the frobenius

norm‖X − Y ‖2F =
∑d

i,j=1(Xij − Yij)2. What would the projection on the PSD
cone of a diagonal matrix look like? We would see each entry along the diagonal
clipped by a minimum of 0. Say Y is not diagonal. If it is symmetric, we can
diagonalize it. Y = UTDU where U ∈ Rd×d is orthogonal and UTU = I. D is
diagonal diag{λ1, . . . λd}. For any X ∈ Sd×d+ , we have X̃ = UXUT which is also
in Sd×d+ .

‖Y −X‖2F = ‖UT (D − X̃)U‖2F = ‖D − X̃‖2F

In other words, the frobenius norm is unitary invariant. This means that multi-
plying by unitary matrices does not change its value. This also means that there
is no dependence on the eigenvectors. This means the norm is purely a spectrum
of the matrix. If you minimize over all X, is it the same as minimizing over all
X̃. For a symmetric matrix, simply diagonalize, clip and the re-assemble.

(e) Take the nuclear norm. For symmetricX ∈ Rd×d, we have ‖X‖nuc =
∑d

j=1 |λj(X)|.
Note that the frobenius norm is effectively L-2 applied to the eigenspectrum.

‖X‖F =
√∑d

j=1 λ
2
j(D), whereas the nuclear is effectively L-1 applied to the
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eigenspectrum. The nuclear norm is useful in practice because it is a convex sur-
rogate for “low-rankness”. When you run PCA, you are minimizing the frobenius
norm between the matrix A and its low-rank approximations. There are other
forms of low-rank approximations that are computationally intractable. Take
the nuclear norm and consider its ratio with the frobenius norm. Suppose your
matrix is rank r << d.

‖X‖nuc
‖X‖F

≤
√
r

This tells you how close to low rank your matrix X is. This is analogous to the
L-1 , L-2 norms for vectors.

‖x‖1
‖x‖2

≤
√
k

for all k-sparse x ∈ Rd with at most k non-zeros. What does the projection onto
the nuclear norm ball look like? We are soft-thresholding the eigenvalues. We
can check that the nuclear norm will be unitarily invariant, since it only depends
on the eigenvalues.

The above are all polynomial time examples. Next time, we will analyze the projected
gradient descent algorithm itself:

xl+1 = ΠC(xl − α∇f(xl))

We will show that with (m,M)-convex, smooth guarantees, we will show ‖xl−x∗‖2 ≤
(1−m/M
1+m/M

)l‖x0 − x∗‖2.
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