
Lecture 4 : General Descent Methods

EE227C . Lecturer: Professor Martin Wainwright . Scribe: Alvin Wan

Recall Q ≤ R↔ R−Q ≥ 0 or (R−Q is positive semidefinite.)

1 Strongly Convex Gradient Descent

Theorem: Let f : Rd → R be differentiable, m-strongly convex, and m-smooth.
Then, gradient descent xl+1 = xl − α∇f(xl) satisfies

‖xl − x∗‖2 ≤ (1− m

M
)l‖x0 − x∗‖2∀l = 1, 2, 3 . . .

where α = 2
M+m

and m
M

is the inverse condition number.

The above improves on our result from the previous note. Instead of considering
second derivatives, we can consider an equivalent definition.

m

2
‖x− y‖22 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ M

2
‖x− y‖22∀x, y ∈ Rd

Start from x and extrapolate to y. Our linear extrapolation f(x) + 〈∇f(x), y − x〉.
Smoothness means that it grows no faster than a quadratic with coefficient M

2
in

front. Convexity means it grows no slower than a quadratic with m
2

in front. This
in essence, is what it means to sandwich in between two quadratics. Let us call the
function that satisfies these bounds (m,M)− f .

Lemma: Any (m,M)− f satisfies:

〈∇f(x)−∇f(y), x− y〉 ≥ mM

m+M
‖x− y‖22 +

1

M +m
‖∇f(x)−∇f(y)‖22

This lemma says the following: we can get a lower bound on the difference in gradients
and points. We found last time that 〈∇f(x)−∇f(y), x− y〉 ≥ ‖x− y‖22. What we’ll
find this time is a lower bound with coefficients in terms of m,M . To prove the
lemma, consider φ(x) = f(x) − m

2
‖22, which is convex and (M −m) − smooth. Let

us begin by proving the theorem using the lemma as given. Last time, we did the
following noting that xl+1 − xl = −α(∇f(xl)−∇f(x∗)):
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‖xl+1 − x∗‖22
= ‖xl+1 − xl + xl − x∗‖22
= ‖xl − x∗‖22 + α2‖∇f(xl)−∇f(x∗)‖22 − 2α〈∇f(xl)−∇f(x∗), xl − x∗〉

≤ (1− 2α
mM

m+M
)‖xl − x∗‖22 + α(α− 2α

m+M
)‖∇f(xl)−∇f(x∗)‖22

Plugging in α = 2
m+M

, the last term drops off. Hence,

‖xl+1 − x∗‖22 ≤ (1− 4

m+M

mM

m+M
‖xl − x∗|22

= (
m−M
m+M

)2‖xl − x∗‖22

This implies the following, where κ = M
m

.

‖xl − x∗‖2 ≤ (
1− 1/κ

1 + 1/κ
)l‖xl − x∗‖2

This is stronger than the lemma we set out to prove. Before, we directly bounded
the gradient and eventually had a complicated term in terms of α. This time, we
leveraged both the smoothness and convexity in a more efficient way.

How many steps do I need so that ‖xN − x∗‖2 ≤ ε ← (1−1/κ
1+1/κ

)N‖x0 − x∗‖2 ≤ ε. We

have N(ε) = log(‖x
0−x∗‖2
ε

)(log(1+1/κ
1−1/κ))−1.

2 Contractivity

As we noted last time, this bound isn’t practical to compute, because computing M,m
is expensive to compute. As a result, we will develop more sophisticated notions to
choose step sizes.

We showed the operator Tα : Rd → Rd is the following:

Tα(x) = x− α∇f(x)with α =
2

m+M
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contractive with parameter γ = 1−1/κ
1+1/κ

. The following gives us gradient descent with
errors.

xl+1 = T (xl) + el

It can be hard to evaluate the function value let alone compute its gradients. It could
also be that gradient computation is expensive or inaccurate. Why contractivity is
important: If you have a contraction, it will a) be stable under determinstic errors
with l − 2 norm. In other words, your algorithm doesn’t suddenly diverge; it will
converge to a neighborhood of x∗. Even with random noise that is bounded in l-2
norm, it will converge to a neighborhood of x∗. Long story short: when you can prove
iterates are contractive, you can show that the algorithm is resistant to noise.

3 Convex Gradient Descent

We might want to deal with functions that are not differentiable. For example, take
the l-1 norm. You can still have functions that are not differentiable but still convex,
such as |x|. These arise in practice, so we will need to handle these types of functions.
We additionally need to handle more misbehaving functions. To do this, we need to
relax conditions and see what else we can guarantee. We pay a price, however, with
looser constraints. In some cases, we don’t even have a function that converges. We
will need to modify constraints incrementally to see how it behaves.

3.1 Descent Methods

We now ask: what happens if we have less structure? We now remove the strong
convexity condition, setting m = 0. Suppose f is convex, differentiable, and M-
smooth.

xl+1 = xl − 1

M
∇f(xl) = argminy∈Rd{f(xl) + 〈∇f(xl), y − xl〉+

M

2
‖y − xl‖22}

Note that this is gradient descent with step size α = 1
M

. The second expression
is a linear approximation at xl summed with a quadratic regularizer. This tells us
that gradient method with α = 1

M
is a descent method, meaning a method that

generates iterates such that the error is decreasing.
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f(xl+1)− f(xl)− 〈∇f(xl), xl+1 − xl〉 ≤ M

2
‖xl+1 − xl‖22

Note xl+1−xl = − 1
M
∇f(xl), ‖xl+1−xl‖22 = ‖− 1

M
∇f(xl)‖22, and 〈∇f(xl), xl+1−xl〉 =

− 1
M
‖∇f(xl)‖22. We then get taht

f(xl+1) ≤ f(xl)− 1

2M
‖∇f(xl)‖22

This means our method is indeed a descent method. Suppose f(x∗) = minx∈Rdf(x)
exists and is finite. We don’t have guarantees for the uniqueness of x∗, so we can’t
discuss convergence to a particular x∗. We can consider converge of function values
f(xl)→ f(x∗) or convergence to this set. We will choose the former, but the rate will
not be especially fast.

The more general class of methods picks a direction that decreases cost. The newton
method, for example, is much more efficient in some cases. We will also want to
understand coordinate descent. Instead of computing the full gradient, we pick one
gradient to compute a gradient for. We then step in the direction of that direction.
We’d expect coordinate descent to perform at a slower rate, but it’s O(d) faster to
compute. The name ”stochastic gradient” is a misnomers, as they are not descent
methods and do not decrease a cost function.

3.2 Rate of Convergence

Theorem Say f is convex, differentiable, and M-smooth. Say f(x∗) = minx∈Rd f(x), x∗ ∈
argminx∈Rdf(x). Then, gradient descent with α = 1

M
step size:

f(xT )− f(x∗) ≤ M‖x0 − x∗‖22
2T

In other words, after T steps, we will reach an error that drops to a constant over
T .This is much slower than the previous rate, exponentially slower in fact. The
iteration complexity of this algorithm is the following.

N(ε) =
M‖x0 − x∗‖2

2ε

Contrast this with log(1
ε
) with strong convexity. We’re only toying with polynomial

factors, without the guarantee of convexity. We have that
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f(xl+1) ≤ f(xl)

=
1

2M
‖∇f(xl)‖22 ≤ f(x∗) + 〈∇f(xl), x∗ − xl〉 − 1

2M
‖∇f(xl)‖22

= f(x∗) +
M

2
{‖xl − x∗‖22 = ‖xl − x∗ − 1

M
∇f(xl)‖22}

Now, we have a telescoping recursion in the last term, when we plug in. The sequence
is decreasing, so by average, we get a smaller value. This first step is due to the fact
that {f(xl)− f(x∗)}∞l=0 is decreasing. In the last bound, we ignore the negative term.

f(xT )− f(x∗) ≤ 1

T

T−1∑
l=0

(f(xl+1)− f(x∗)) ≤ M

2T
{‖x0 − x∗‖22}

The proven bound works for all minimizers, as we make no additional assumptions
about x∗. We can thus replace it with the infimum over all such minimizers.
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