Quiz 18 Solutions

written by Alvin Wan . alvinwan.com/cs70

Thursday, March 31, 2016

This quiz does not count towards your grade. It exists to simply gauge your understanding. Treat this as though it were a portion of your midterm or final exam. In this quiz, we will walk through identifying identifying random variables.

Solution: You should recognize that a problem asking for "how many [thing]s satisfy [condition]" is a binomial distribution, which immediately means two things:

- 1. Our random variable is *most likely* an indicator, with 1 for success on the ith trial.
- 2. As with all indicator variables, E[X] = p, where p is the probability of success on the ith trial.

In case you're confused why E[X] = p for indicator variables, remember the following.

$$E[X] = [X = 1] + E[X = 0]$$

= $P[X = 1] * 1 + P[X = 0] * 0$
= $p * 1 + (1 - p) * 0$
= p

As intimidating as this may be, you should find that this instinctual response ("how many" \rightarrow binomial distribution \rightarrow indicators) will reduce the problem to computing the probability of success on the ith trial.

1 Identifying Random Variables

1. Paul and Nathan thoroughly enjoy oranges; however, Nathan doesn't like peeling oranges. Everytime Paul finishes peeling an orange, Nathan will with probability p successfully steal Paul's peeled orange. If Paul peels n oranges, how many oranges will be eat successfully?

Solution: Let $X = \sum_{i} X_i$ be the number of oranges Paul eats, where X_i is 1 if Paul eats an orange on the ith trial.

We now that $P[X_i]$ is the probability that Nathan does not steal an orange, making $P[X_i] = 1 - p$

$$E[X] = E[\sum_{i} X_{i}]$$
$$= \sum_{i} E[X_{i}]$$
$$= nE[X_{i}]$$
$$= n(1-p)$$

This is exactly the formula for a binomial distribution's mean.

2. Angie goes to the music building daily to practice singing. Each day, she chooses one of n pieces at random. Given some m < n of the pieces are arias, let us impose an absolute ordering on these arias. If Angie practices for k days, how many times will Angie practice all arias in sequential order, without repeating an aria? (Note that this means Angie will necessarily spend m days, practicing one aria a day, to finish one sequence.)

Solution: We see "how many". Our instinctual response is "binomial distribution" and "pick an indicator variable". However, we need to be careful.

We define X to be the total number of sequences and $X = \sum_i X_i$ where X_i is be 1 iff Angie begins a sequence on day i. This means that the last day Angie can begin a sequence is k - m + 1. Thus, we actually consider k - m + 1 trials.

Now, we compute the probability that, of m trials, Angie picks exactly the right m arias in sequential order. Thus, the probability for a particular X_i is $\frac{1}{n^m}$.

$$E[X] = E[\sum_{i} X_{i}]$$
$$= \sum_{i} E[X_{i}]$$
$$= (k - m + 1)E[X_{i}]$$

$$= (k-m+1)\frac{1}{n^m}$$