

CS61A : THE STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

UNOFFICIAL QUIZ for PRACTICE SOLUTIONS

QUIZ 6
Computer Science 61A . October 8, 2015 . alvinwan.com/cs61a

This quiz will not count towards your grade. It exists to simply gauge your understanding.

You will have 5 minutes to complete this quiz. In that timespan, your goal is to complete one

question and at least attempt the other two.

01. OOP AND NONLOCAL

We have two ways of maintaining state: nonlocals and objects. In the following question, we
will see how either approach can be used for the same functionality. Implement both class
Lo and the function lo, so that both yield the same results. (Hint: Like str(obj) is equivalent
to obj.__str__(), we know that obj() is equivalent to obj.__call__())

>>> yo = lo() # should be able to replace lo with Lo for identical results
>>> yo('report') # called once
1
>>> yo()('report') # called 1 + 2 = 3 times
3
>>> yo()()('report') # called 3 + 3 = 6 times
6

def lo():
 """ lo returns a function that
 prints the number of times
 the function was called.
 """
 n = 0
 def helper(report=None):
 nonlocal n
 n += 1
 if report:
 return n
 return helper
 return helper

class Lo:
 """ Creates objects that returns the
 number of times it was called, when
 asked to report.
 """

 def __init__(self):
 self.n = 0

 def __call__(self, report=None):
 self.n += 1
 if report:
 return self.n
 return self

CS61A FALL 2015 . written by Alvin Wan

go to alvinwan.com/cs61a for more practice

CS61A : THE STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

UNOFFICIAL QUIZ for PRACTICE SOLUTIONS

02. OOP AND MUTABILITY

Kristin and Sammy are responsible for the Ants project, but they’ve inherited faulty code from
me! They can’t identify the bugs in the following code. For all three bugs, identify (1) the error,
(2) a scenario that would expose the bug, and (3) how to fix it.

create_creature = lambda name, food=[]): [name, food] # all food lists are the same one
change_creature_name = lambda creature, new_name: [new_name] + creature[1:]
give_creature_food = lambda creature, food: creature[‘food’].append(food)

class Game:
 creatures = []

 def start(self):
 creatures.append(create_creature(‘Sumukh’)) # all games share a list of creatures

 def bobify_all(self):
 for creature in creatures:
 creature = change_creature_name(creature, name) # does not modify original list

 def feed_all(self, food):
 for creature in creatures:
 give_creature_food(creature, food)

03. TREES

Assume that we have the standard functions for a tree abstraction (tree(root,
branches=[]), root(t), branches(t), is_leaf(t)). Except, each node is a location, and
each leaf is a tourist attraction. The value of a node represents its elevation above sea level.
Write a function that gives us the maximum elevation for the path to a specified destination.

def get_max_elevation(t, dest):
 """
 t = tree(5, [tree(6, [tree(7), tree(4)]), tree(3, [tree(2), tree(1)])])
 >>> get_max_elevation(t, 2)
 5
 >>> get_max_elevation(t, 5) # 5 is not a valid destination
 -1
 """
 if is_leaf(t) and root(t) == dest:
 return root(t)
 for b in branches(t):
 highest = get_max_elevation(b, dest)
 if highest:
 return max(root(t), highest)
 return False

CS61A FALL 2015 . written by Alvin Wan

go to alvinwan.com/cs61a for more practice

