Quiz 3

03 Support Vector Machines, Con-
vex Optimization

by Alvin Wan

1 Convexity
Prove that if f(x) is convex, f(ax + () is convex for scalars «, . Hint: If you're
stuck, take g(x) = ax + p.

Solution: Recall that a function is convex if

Vxl,xg S R,t S [O, 1}, f((l — t)l‘l + tﬂfg) < (1 — f)f(l’l) + tf(.flfg)

Take g(z) = ax + § and the following f(g(x)); we first prove a lemma.
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Then, simply apply the convexity of f.

fU(1=1t)g(x1) + tg(z2))

flg((1 = t)zy + txg)) =
< (L=1t)f(g(z1)) +tf(g(x2))



2 Linear Algebra

Compute the variance of u € R", where u ~ (0, I). This notation simply means that
u is sampled from some distribution with mean 0, where the covariance matrix of u
is I. Consider A € R™". Compute variance of y = Au.

Solution:

E[(Au = p)" (Au — p)]
= E[(Au)T Au]

= Elu” AT Au]

= E[Tr(A” Auu™))

= Tr(E[AT Auu™))
=Tr(ATA)

= || A%

As it turns out, this is precisely the Frobenius norm.
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