
Note 5

05 Decision Theory

by Alvin Wan

We now consider a probabilistic classifier. Before we begin, however, let us consider
some important concepts from probability. If this is your cup of coffee, feel free to
skip to section 3 below.

1 Discrete Probability Review

We know that the joint of two events can be expanded; this is called the chain rule.

Pr(A,B) = Pr(A|B) Pr(B)

We can also sum out over all possibilities of one event, to rid of it. Thus, we obtain
the total probability law.

Pr(B) = Pr(A,B) + Pr(Ā, B) = Pr(B|A) Pr(A) + Pr(B|Ā) Pr(Ā)

More generally, we have Pr(A1, A2, . . . An) = Pr(A1) Pr(A2|A1) · · ·Pr(An|An−1, An−2 . . . , A1).
Rearrange the first line above to get our definition of conditional probability.

Pr(A|B) =
Pr(A,B)

Pr(B)

Applying chain rule to the numerator, we have the formulation of Bayes’ rule:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

Above, Pr(A) is termed the prior and Pr(A|B) is termed the posterior.
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2 Continuous Probability Review

In effect, replace all summations with integrals. The expected value of random vari-
able X is defined as

E[X] =

∫ ∞
−∞

xfX(x)dx

where fX(x) is the probability density function (pdf) of X. The cumulative
distribution function (cdf) FX(x) is defined to be

FX(x) =

∫ ∞
−∞

fX(x)dx

Variance is defined as the “spread” of our data, just as in discrete probability.

var(X) = E[(X − E[X])2] = E[X2 − 2E[X]X + E[X]2] = E[X2]− E[X]2

3 Decision Rule

Consider a binary-valued true label Y and binary-valued prediction Ŷ . Additionally,
consider our loss function from before, where L(ŷ, y) is 1 if our prediction is not the
true label ŷ 6= y and 0 otherwise. Now note: If the probability of class 0 is greater
than the probability of class 1 given x, P (Y = −1|x) > P (Y = 1|x), we predict class
Y = −1. This is how our intuitive reasoning works: we pick the largest posterior
probability. In other words, our decision rule is the following:

f(x) =

{
1 if Pr(Y = 1|x) > Pr(Y = −1|x)

−1 otherwise

What if we wish to “weigh” certain misclassifications more? We call L(1,−1) a false
positive, since we predicted true incorrectly. Call L(1,−1) a false negative, since
we predicted false incorrectly. In some cases, a false negative may be far worse than a
false positive i.e., determining whether a patient has cancer. To formalize this notion,
we consider the following loss matrix, another representation of our loss function.
Here, we heavily penalize a false negative, by setting the value of L(−1, 1) to be
arbitrarily high.
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Y=-1 Y=1

Ŷ = −1 0 100

Ŷ = 1 1 0

We now consider the expected loss associated with predicting true, Ŷ = 1.

`(x|ŷ = 1) = E[L(1, y)]

=
∑
y

L(1, y) Pr(Y = y|x)

= L(1,−1) Pr(Y = −1|x) + L(1, 1) Pr(Y = 1|x)

= L(1,−1) Pr(Y = −1|x)

We can repeat this to obtain the expected loss associated with predicting false, Ŷ =
−1. We get

`(x|ŷ = −1) = E[L(−1, y)] = L(−1, 1) Pr(Y = 1|x)

Thus, we can construct a new decision rule, where we predict true, if the expected loss
for predicting true is less than the expected loss for predicting false. In other words,
our prediction function f is the following, which is known as the Bayes Decision
Rule.

f(x) =

{
1 if `(x|ŷ = 1) > `(x|ŷ = −1)

−1 otherwise

Takeaway: If the loss matrix is asymmetric, weight posteriors with losses.

4 Risk Minimization

The above decision rules are built to minimize risk, which is total expected loss with
respect to all x, y. Taking risk, we have
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R(f) = E[L(f(x), y)]

=
∑
x

L(f(x), 1) Pr(Y = 1, x) + L(f(x),−1) Pr(Y = −1, x)

=
∑
x

L(f(x), 1) Pr(x|Y = 1) Pr(Y = 1) + L(f(x),−1) Pr(x|Y = −1) Pr(Y = −1)

Say that our class-conditional probabilities are continuous densities. Then, we have
the following formulation:

R(f) = E[L(f(x), y)]

=

∫
x

(L(f(x), 1)fX|Y (x|1) Pr(Y = 1) + L(f(x),−1)fX|Y (x| − 1) Pr(Y = −1))dx

Note that the Bayes optimal decision boundary is all x such that either class is
equally likely, {x : Pr(Y = 1|x) = 0.5}. To generalize to more classes, we can simply
take the maximum posterior probability, maxi Pr(Y = i|x).
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