
Note 3

03 Support Vector Machines

by Alvin Wan

In this note, we maximize the margin for a classifier, namely the distance between
a decision boundary H and the point closest to it. A larger margin is preferred, as
it indicates a higher confidence that our classifier is correct. Let us start by deriving
the objective function. We stick with the same setup - a binary classification problem
where yi ∈ {1,−1}, ŷi = 1

‖w‖2 (wTxi + β) and xi, w ∈ Rd. We define the margin to be
the following:

min
i

1

‖w‖2
(wTxi + β)

1 Hard Margin Classifier

First, we desire all classifications to be correct. Per the previous note, we thus want
yi = ŷi or equivalently, yiŷi ≥ 0 and

yi(w
Txi + β) ≥ 0

However, this introduces a trivial solution with w = ~0. We can thus equivalently
write the following, where m > 0 is a constant that will become proportional to the
margin.

yi(w
Txi + β) ≥ m

Now, divide both sides by ‖w‖2.

yi
‖w‖2

(wTxi + β) ≥ m

‖w‖2

1

Recall the distance between a point xi and the decision boundary H is 1
‖w‖2 (wTxi+β).

Since yi ∈ {1,−1}, multiplying by yi does not change the absolute value, so the left
hand side is the distance from the decision boundary. Thus, the above tells us that
the margin is at least m

‖w‖2 and that the slab formed by the decision boundary is at

least 2m
‖w‖2 in width. To maximize the width of this slab 2

‖w‖2 , we need to minimize

‖w‖2. To make our objective function smooth everywhere, we will take our objective
function to be wTw = ‖w‖22. Thus, our optimization problem is the following:

min
w,β
‖w‖22 subject to yi(w

Txi + β) ≥ m,∀i ∈ [1, n]

This is a quadratic program in d + 1 dimensions with n constraints. d + 1 comes
from the simplification we made in the last note, converting wTxi + β into w′Tx′i,
where x′i ∈ Rd+1. What happens if our data is not linearly separable, or if our data
was corrupted by a misplaced sample point? We next discuss a soft-margin classifier,
which tolerates errors but incurs penalties for each error committed. This generalizers
better and is not as susceptible to outliers in data.

2 Soft Margin Classifier

For a soft margin classifier, we introduce a slack variable ξi. This variable should
be 0 for points at least the minimum margin m

‖w‖2 away from the decision boundary.
To effect this, we enforce a non-negativity constraint ξi ≥ 0 and include it in the
following manner:

yi
‖w‖2

(wTxi + β) ≥ m− ξi
‖w‖2

Note that this inequality is equivalent to the following.

yi(w
Txi + β) ≥ m− ξi

In other words, if xi is classified correctly and is more than m
‖w‖2 away from the

decision boundary, ξi is 0. For xi that lie on the wrong side of the margin (so any
point in the slab, even if it is classified correctly, is included), then ξi is greater than
0 in order for the constraint to be satisfied.

We could simply modify the constraint from the quadratic program derived above.
However, means the algorithm could simply choose w = 0 and let all ξi tend to
arbitrarily large values. Thus, we penalize all non-zero ξi by including it in our
objective function.

2

min
w,β,ξi

‖w‖22 + C

n∑
i=1

ξi

subject to

∀i ∈ [1, n], yi(w
Txi + β) ≥ m− ξi

∀i ∈ [1, n], ξi ≥ 0

The quadratic program above is in d+n+ 1 dimensions and 2n constraints. C above
is a regularization hyperparameter. Think of C as the penalty you pay for an
error. If C approaches infinity, the above optimization problem becomes equivalent
to a hard-margin classifier, since all errors are intolerable. The following is a table
comparing different values of C, taken verbatim from Professor Jonathan Shewchuk’s
notes.

small C big C
desire maximize margin keep most slack variables zero or small
danger underfitting overfitting
outliers less sensitive very sensitive
boundary more “flat” more sinuous (for other, nonlinear decision boundaries)

Notice that the above optimization problem can actually be reformulated, to give
us additional intuition. Recall that C is a hyperparameter, m > 0 is a constant
proportional to the size of our margin.

min
w
‖w‖22 + C

n∑
i=1

max(m− yi(wTxi + β), 0)

Intuitively, we take the distance from the decision boundary and multiply by yi so
that our new term yi(w

Txi+β) is negative if xi is misclassified and positive otherwise.
m− yi(wTxi + β) is then always positive if xi is misclassified and is negative if xi is
not more than m

‖w‖2 away from the decision boundary. In short, we are minimizing
the sum of all distances between xi and the wrong side of the margin.

3 Nonlinear Features

Now, we present several conventional approaches to finding nonlinear decision bound-
aries. In short, we add nonlinear features that lift points from Rd to a higher dimen-
sional space. Let us introduce a more formal notation, namely the featurization

3

φ(·). Each featurization will take x to some new φ space, with the goal of find a
linear decision boundary in a higher dimensional space or to find a larger margin. In
either case, an increasing number of dimensions corresponds to a higher chance of
overfitting.

3.1 Parabolic Lifting Map

Take the original vector x ∈ Rd, and add an additional entry |x|2 to x ∈ Rd+1.
φ(x) : Rd → Rd+1.

φ(x) =

[
x
|x|2
]

The featurization φ encapsulates the notion of lifting x to a paraboloid.

3.2 Axis-Aligned Ellipsoid/Hyperboloid

We extend the previous featurization. Take the original set of features x ∈ Rd and
square every feature φ(x) : Rd → R2d.

φ(x) =
[
x21 · · · x2d x1 · · · xd

]T
Axis-aligned ellipsoids in Rn follow the general structure

∑n
i=1 aix

2
i +
∑n

i=1 bixi+β = 0
for some constant β. (For example, a1x

2
1 + a2x

2
2 + b1x1 + b2x2 + β = 0.) Thus, the

hyperplane is wTφ(x) + β = 0, where

wT =
[
a1 · · · anb1 · · · bn

]
3.3 Non-Axis-Aligned Ellipsoid/Hyperboloid

We again extend the previous featurization by considered non-axis-aligned quadrics.
Now, we consider all possible cross terms, φ(x) : Rd → R(d2+3d)/2. To be more explicit,
we consider d = 3.

φ(x) =
[
x21 x22 x23 x1x2 x2x3 x1x3 x1 x2 x3

]T
Non-axis-aligned ellipsoids follow the general structure

∑n
i=1 aix

2
i +

∑
i 6=j bijxixj +∑n

i=1 cixi + β = 0 for some constant β. Thus, as before, the hyperplane is defined by
wTφ(x) + β = 0, where w contains the coefficient of each term.

4

3.4 Degree-p Polynomial

Again a generalization of the previous feature, this technique takes an arbitrary degree
p polynomial, φ(x) = Rd → RO(dp). For example, take d = 3 again.

φ(x) =
[
x31 x21x2 x1x

2
2 x32 x21 x1x2 x22 x1 x2

]
Using this form of featurization, we now have two hyperparameters to tune: p, the
degree of the polynomial, and C, the degree of slack.

3.5 Edge Detection

Use an edge detector. The basic premise is to detect discontinuities in brightness, as
these may indicate changes in depth, material, or orientation. However, since these
discontinuities exist, we need to approximate gradients. Common techniques include
the Sobel filter, tap filter, and the oriented Gaussian derivative filter.

5

