
Note 2

02 Perceptrons

by Alvin Wan

With machine learning in general, we learn a prediction function f , which gives us
a prediction ŷ when given a sample point x, ŷ = f(x). We will narrow our focus
to a specific problem: consider a question to which we answer “yes” or “no”. We
can choose to assign all x where f(x) > 0 to “yes” and otherwise to “no”. We call
this problem a binary classification problem, and in such a problem, we learn a
decision boundary, which separates sample points that belong to a class C and
those that do not. Formally, the decision boundary is the set of all points x such
that f(x) = 0, {x ∈ Rd : f(x) = 0}. In the two-dimensional case, this decision
boundary is a line separating x ∈ Rd. In higher dimensions, this decision boundary
is a hyperplane.

What about other classification problems with k > 2 classes? As it turns out, one
such option is to run binary classification k times, with the added feature (or bug)
that one sample xi could be tagged with multiple classes.

1 Intuition

Let us begin by gathering some linear algebra intuition. This intuition is critical
to understanding the loss functions we introduce later on. Above, we considered a
prediction function f . We now consider a specific structure for this prediction function
f(x) = wTx+β, for w, x ∈ Rd, β ∈ R, where w and β are the parameters of the model
that we learn during training. They are additionally called regression coefficients.
As stated before, the decision boundary is then a hyperplane defined by

H = {x ∈ Rd : f(x) = wTx+ β = 0}

Theorem 1 For some point x not on the decision boundary, f(x)
‖w‖2 is the signed distance

d from x to H, where f(x) = wTx+ β.

1

Proof : We wish to show d = wTx+β. Consider d to be the signed distance from
x to H. Let xH be the vector in H that is “closest” to x. First, since xH ∈ H,
we know

wTxH + β = 0

Recall that for any hyperplane H, w is orthogonal to all points in H. Consider
the direction of w, w

‖w‖2 multiplied by the distance between x and xH . This is
precisely x− xH : first, they share the same distance, by definition. Second, they
share the same direction, since we know the shortest vector between x and H is
orthogonal to H. Rearrange to isolate xH .

x− xH =
w

‖w‖2
d

xH = x− w

‖w‖2
d

Plug this into our first equation to get our final formulation. We then distribute
and rearrange. Note wTw = ‖w‖22.

wT (x− w

‖w‖2
d) + β = 0

wTx− ‖w‖
2
2

‖w‖2
d+ β = 0

wTx+ β = d‖w‖2

d =
f(x)

‖w‖2

Theorem 2 The distance from the origin of Rd to the decision boundary is β
‖w‖2 .

Proof : Given Theorem 1, we can plug in d = f(~0) = 1
‖w‖2 (wT~0 + β) = β

‖w‖2

2

2 Centroid Method

We begin with a simple classifier, called the centroid method. We take an average
µC of all sample points in class C and µX of all points not in C. Our prediction
function f(x) outputs a negative value if x is closer to µX and otherwise outputs a
positive value.

f(x) = (µC − µX)Tx− 1

2
‖µC − µX‖22

With the above, we take a scaled projection of x along the difference between means
µX − µC . This is effectively the amount of x that leans towards either mean. Sub-
tracting half the distance between the two means, we get a positive value if x leans
closer to C and a negative value otherwise. We can consider another interpretation
of the same prediction function.

f(x) = (µC − µX)T (x− (µC − µX)

2
)

We interpret (µC−µX)
2

to be the midpoint between the two means. The above function
then takes the difference between the sample point x and the midpoint. This is then
projected onto the difference µC − µX between means.

3 Risk Function

The perceptron is one linear classification method that will always converge to the
correct decision boundary for linearly separable data. If the data is not linearly
separable, the perceptron algorithm will not converge.

First, we consider a dataset with n sample points {xi}ni=1, where some xi are in class
C, xi ∈ C. Define the labels yi to be the following.

yi =

{
1 if xi in class C

−1 if xi not in class C

3

Recall from Theorem 1 that the distance from a point xi to the decision boundary
H = {x : wTx + β} is d = wTxi + β. For simplicity, we will consider decision
boundaries that cross the origin, or where β = 0. Thus, the distance from xi to H is
wTxi. Our goal is to achieve the following predictions ŷi for each xi, using our model
w:

ŷi =

{
wTxi > 0 in class C

wTxi < 0 if xi not in class C

Note that ŷi is not necessarily positive and negative in the correct scenarios, for a
given model w. The above statement is simply our goal. Using these two definitions,
we develop the notion of a loss function, which evaluates to 0 if the prediction is
correct and is otherwise a negative quantity. We can construct a simple loss function
like below:

L(ŷi, yi) =

{
0 if yi = ŷi

1 if yi 6= ŷi

However, we can construct a more clever, continuous loss function. Continuity will be
important later, when we take its gradient. We note that if the prediction is correct,
yi and ŷi are both negative or are both positive. In either case, yiŷi > 0. If the
prediction is incorrect, yi and ŷi have opposite signs, meaning yiŷi < 0.

L(ŷi, yi) =

{
0 if yiŷi > 0

−yiŷi if yiŷi < 0

Moving forward, we will need to consider the objective function (a.k.a. risk func-
tion), which gives us the quantity we are interested in minimizing. For now, our
objective function is simply the loss function evaluated for all sample points xi.
Below is the objective function, where V is the set of all indices i where yi 6= ŷi or
equivalently, yiŷi = wTxi < 0, V = {i : yiw

Txi < 0}.

R(w) =
n∑
i=1

L(ŷi, yi) =
∑
i∈V

−yiŷi =
∑
i∈V

−yiwTxi ≈
∑
i∈V

1 = |V |

In other words, the above objective function R approximately counts the number of
misclassified points. If R(w) = 0, we have achieved 100% accuracy. Otherwise, we
take what is called a gradient step.

4

4 Gradient Descent

In your very first single-variable calculus class, you learned how to solve minx f(x):
take ∂

∂x
f(x) = 0 and solve for x. In your multi-variable calculus class, you learned

to repeat for x ∈ Rd, setting ∇f(x) = 0 and solving for x. In this course, we add
another general technique for this optimization problem - by employing gradient
descent. We will discuss descent methods in more detail later on.

Gradient descent is particularly applicable in scenarios where there is no closed-form
solution for x given ∇f(x) = 0. We will apply gradient to the loss function above R
to obtain the perceptron algorithm. Consider the gradient of our objective function
from above R(w) = −

∑
i∈V yiw

Txi below:

∇R(w) =
∂

∂w
(−
∑
i∈V

yiw
Txi) = −

∑
i∈V

∂

∂w
(yiw

Txi) = −
∑
i∈V

yixi

This gives rise to the following algorithm, where we update w at each iteration with
the gradient ∇R(w) and step size ε.

Algorithm 1 Running perceptron algorithm with gradient descent

1: function perceptron(x, y)
2: w ← arbitrary non-zero value
3: while R(w) > 0 do
4: V ← set of indices i s.t. yiw

Txi < 0
5: w ← w + ε

∑
i∈V yixi

return w

However, this method takes O(d) computing wTxi for every xi, where there are up to n
xi. This makes O(nd) per iteration. We can alternatively use stochastic gradient
descent which samples xi at random and for perceptrons, also converges to the
optimal w∗ if gradient descent does. Note that stochastic gradient descent is not
always guaranteed to converge.

We briefly return to our original problem, where the decision function has the form
f(x) = wTx + β for some non-zero β. As it turns out, we can simply increase the
dimension of x so that the decision boundary again passes through the origin. With a
decision boundary that passes the origin, we can then apply the perceptron algorithm
above. Say our decision boundary satisfied the following condition for x,w ∈ Rd.

5

Algorithm 2 Running perceptron algorithm with stochastic gradient descent

1: function perceptron(x, y)
2: w ← arbitrary non-zero value
3: while some yiw

Txi < 0 do
4: w ← w + εyixi

return w

f(x) = wTx+ β =
[
w0 w1 · · · wd

]

x0
x1
...
xd

+ β = 0

We can then take x′, w′ ∈ Rd+1 for the following decision boundary:

f(x) = w′Tx′ =
[
w0 w1 · · · wd 1

]

x0
x1
...
xd
β

 = 0

Note that both functions give us the same value of f(x) = w0x0 +w1x1 + · · ·+wdxd+
β. As it turns out, the perceptron algorithm fairly slow. Fortunately, we can find
solutions much faster using quadratic programming, the topic of our next note.

6

