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First, the definition: CCA determines a subspace for us to project onto, that max-
imizes normalized covariance. That seems like a mouthful, so let’s break this down.
Consider this formula:

ρ(a, b) =
cov(a, b)

σaσb
=

cov(a, b)√
var(a) var(b)

for random variables a, b. We want this quantity to be large, because the higher
this number, the more information we have about a when we have b. This notion
of “information” is hand-wavy, however. Let’s make the motivation more concrete,
first.

The formula ρ(a, b) is called the Pearson correlation coefficient (PCC). The
expression has values between 1 and -1, where:

• 1 means positively correlated. Change in one random variable a means pro-
portional change in b.

• 0 means no correlation.

• -1 means negative correlated. Change in one random variable a means a
proportional change in the reverse direction for b.

More importantly, PCC tells us whether or not a, b are linearly related. Note that
below, when I say “correlation”, I really mean PCC.

1 Motivation

We need intuition for the fundamental question: why is maximizing correlation im-
portant? We can do this by showing where other approaches, like PCA, fail. Take
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a simplified scenario, with two matrix-valued random variables X, Y . For simplicity,
say Y = X + ε where noise ε has huge variance. What happens when we run PCA
on Y ? Since PCA maximizes variance, it will actually project Y (largely) into the
column space of ε. However, we’re interested in Y ’s relationship to X, not its depen-
dence on noise. How can we fix this? As it turns out, CCA solves this issue. Instead
of maximizing variance of Y , we maximize correlation between X and Y . In some
sense, we want the maximize “predictive power” of information we have.

Although, how does correlation translate into “predictive power”? We can consider
a perspective using linear algebra and another using independence, albeit weakly:

1. Take a, b to be vector-valued random variables, neither of which have zero mean.
Then, we know that these vectors are orthogonal if and only if E[ab] = 0. Oth-
erwise, the two vectors are linearly-related, and as a result, we can potentially
model one random variable using the other. We expand on this below.

2. Take the extreme cases. When a, b are independent, we know cov(a, b) =
ρ(a, b) = 0. In general, the converse does not necessarily hold, but if a, b
are jointly Gaussian, cov(a, b) = ρ(a, b) = 0 ⇐⇒ a, b independent. Now, take
cor(a, b) = 1. Then, we know that each change in a will see a corresponding
change in b in the same direction with proportional magnitude.

The motivation should make both intuitive and mathematical sense now, so let’s
consider this a maximization problem. However, what are we maximizing over?

2 Optimization

Take vector-valued random variable ~x. We want to project this vector onto a subspace.
We’ll characterize this new subspace using just one vector ~u, so our projection is ~uT~x.
Likewise, we can project y onto a subspace and we get vTy. Then, our goal is to
maximize the correlation between these projected vectors. We control the subspaces
u, v, and we want to adjust them so that uTx, vTy are correlated as much as possible.
Formulated more explicitly, we have

max
u,v∈Rd

cor(uTx, vTy)
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This is a simple case where we consider just one vector, for each subspace. However,
we can characterize each of these subspaces with more than one vector. We simply
stack each new basis vector as columns in a matrix U , to obtain

max
U,V ∈Rnxd

cor(UTx, V Ty)

3 Solve

Here, we have a simplified scenario, but the gist is the following:

1. We project x, y into subspaces.

2. Adjust those subspaces so we maximize correlation between the projected x, y.

3. Pick some vector(s) that characterizes those subspaces.

For simplicity, we are characterizing these subspaces by single vectors, as we can solve
this optimization problem, one basis vector at a time. How is that? First, recall the
iterative algorithm for PCA. For some matrix A:

1. Solve xi = argmaxx:‖x‖=1x
TAx.

2. Find new A by removing components of A in the xi direction. For each ai,
replace with ai − xi〈ai, xi〉.

3. Repeat step 1 until you have k of the xi vectors.

In discussion, we showed that CCA can be rewritten in a quadratic form.

max
u,v

[
uT vT

] [ 0 XTY
Y TX 0

] [
u
v

]
subject to‖

[
X 0
0 Y

]
‖ =
√
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Simply apply the same algorithm specified above, as we are again interested in finding
the basis for a new subspace. Let’s close with a question, to gauge your intuition for
CCA.
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Question

Take the following system, as proposed in class, where x, y ∈ Rn×d. For simplicity,
take U, V ∈ Ra×d, C ∈ Rb×d. The remaining A,B,D,E are size-conforming
matrices.

[
x
y

]
=

[
A B 0
0 D E

]UC
V


Given this system, when would CCA demonstrate the most significant advantage
over PCA, if we would like to predict y from x? Consider cases where a >> b, a =
b, and a << b.

Answer

When a >> b. We can start by rewriting this:

x = AU +BC, y = DC + EV

If it isn’t apparent from the formulation above, it should be apparent here, that
x, y share C. In this sense, the “coefficients” B,D contain the information we
desire. A,E are simply “noise”.

What does a >> b mean? This means that U, V are much larger than C. By
construction, the range of U, V are much larger than C’s. In a stochastic interpre-
tation, U, V then account for more variance. As a result, PCA would more likely
project into spaces spanned by U, V . To maximize predictive power, however, we
want to consider x, y in the range of C.

4


