
Clustering with Gradient Descent
compiled by Alvin Wan from Professor Benjamin Recht’s lecture

1 Performance

We explored SVD. Note that in practice, you should not compute XXT , as this squares
all singular values, leading to higher instability. The built-in scipy.linalg.svd has the
same runtime as an explicit computation O(dn2 +d3) but modifies the algorithm so that the
results are more stable.

We also explored k-means clustering. Again, our objective is Minimizeµ1,...µT
∑

i=1Min1≤j≤k‖Xi−
µji‖2. Note that Lloyd’s algorithm might find local minima, and the complexity per iteration
is O(ndk + nd).

Finally, we explored spectral clustering, where our goal was to Minimizecut(V1, V2) s.t.
|V1| = |V2|. This is the equivalent of Minimize1

4
vTLv s.t. vi ∈ {−1, 1}, 1Tv = 0. The

solution to our latter form can be approximated using the solution to Minimize1
4
vTLv s.t.

‖v‖ =
√
n, 1Tv = 0. This always gives a response but it only gives a good answer if there

actually exists clusters in your data. The solution to this is the second eigenvalue, with an
L× n matrix, meaning the runtime is O(n3).

In this note, we will see how gradient descent can be applied to each of these problems, so
that we get iterative algorithms for each of these.

2 SVD with Gradient Descent

In SVD, our goal is to factor X into UΛV T . Recall that an analogous objective

MinimizeA∈Rr×d,B∈Rr×n‖X − ATB‖2F

, where the above objective has the solutions A = Λ1/2UT , B = Λ1/2V T . Let us rewrite the
objective function using the column vectors of A and column vectors of B.

1

A =
[
a1, . . . , ad

]
, B =

[
b1, . . . bn

]
Minimize

d∑
i=1

n∑
j=1

(Xij − aTi bj)2

Take the gradient of the objective to obtain the following, w.r.t. a and w.r.t. b.

∇a{(Xij − aTi bj)2} = −(Xij − aTi bj)bj
∇b{(Xij − aTi bj)2} = −(Xij − aTi bj)ai

We can fit this to gradient descent. Fix step size t 6= 0 and initialize A,B.

1. Sample Yij

2. Set e = Xij − aTi bj.

3. ai ← ai + tebj, bj ← bj + teai.

4. Repeat.

Computing e, ai, and bj all take O(r), so the complexity per iteration is O(r). There are nd
total entries, but interestingly, O((n+ d)r) iterations often will suffice. Turns out the proof
is quite complicated, so we will omit it.

What if most entries are missing? We can run SGD on the fully-observed entries to achieve
matrix completion.

3 K-means Clustering

Our algorithm is even simpler.

1. Pick i.

2. Find µj closest to xi.

3. µj = (1− t)µj + txi.

As it turns out, ∇Minifi(x) = ∇fi(x) In other words, the gradient of the minimum fi(x) is
the equivalent of the gradient at a randomly-selected fi.

2

4 Spectral Clustering

Our goal is to rid of our constraints, else the efficiency of SGD decreases. Run gradient
descent. Recall that

Lij =

{∑
j aij i = j

−aij o.w.

1. Initialize v s.t. 1Tv = 0, so that v = randn(n), v ← v − (1Tv)1.

2. project: v ←
√
n v
‖v‖ .

3. gradient step: v ← v − t
2
Lv.

This is called the projected gradient algorithm1. In short, we project onto the unit ball.
Take a gradient descent, and then repeat. The complexity is the number of nonzero entries
in L. If L is extremely sparse, the weight update for projected gradient is extremely fast.
On the other hand, an extremely dense graph will see a runtime approaching O(n2), and a
graph where the number of neighbors for any node is bounded by a constant k, then the
runtime can be O(n).

How do you choose t? Decrease t until you no longer have nans. How do you choose stopping
criteria? Run for 1-200 epochs. After a number of epochs, set t← βt where β < 1. Common
values are β = 0.9, 0.8, 0.1.

5 Non-Negative Matrix Factorization

We have familiar algorithms for this problem. For each weight update, simply take the
maximum of 0 with the new value. For example, we could modify the iterative algorithm
for SVD to be the following:

1. Sample Yij

1To see a derivation of the projected gradient algorithm, see http://www.stats.ox.ac.uk/ lien-
art/blog opti pgd.html

3

http://www.stats.ox.ac.uk/~lienart/blog_opti_pgd.html
http://www.stats.ox.ac.uk/~lienart/blog_opti_pgd.html

2. Set e = Xij − aTi bj.

3. ai ←Max(ai + tebj, 0), bj ←Max(bj + teai, 0).

4. Repeat.

Our objective function for this problem is formally the following.

Min‖X − ATB‖ s.t. A ≥ 0, B ≥ 0

Why would we want non-negative A,B? Consider a term-document matrix. We note that
this matrix is effectively a bag-of-words model, where each entry is the number of occurrences
of a particular term in a particular document. These entries are strictly non-negative, and
likewise, A,B should not be negative: A represents the topics, and B represents the weights,
how much of each topic is in each document. As it turns out, this problem is NP-hard.

6 Page Rank (Optional)

Create a new matrix H, where

Hij =

{
1 i links to j

0 o.w.

We can take the out-degree ni and create Ĥij = 1
ni
Hij. Take ~p to be the probability of

landing on a page. The eigenvector p = Ĥp gives us the most popular webpages on the
internet.

MaximizepT Ĥp s.t. p ≥

As it turns out, the largest eigenvalue of H is 1, by the Perron-Frobenius theorem. Projected
gradient descent allows us to find this vector in linear time.

4

	Performance
	SVD with Gradient Descent
	K-means Clustering
	Spectral Clustering
	Non-Negative Matrix Factorization
	Page Rank (Optional)

