
Clustering
compiled by Alvin Wan from Professor Benjamin Recht’s lecture, Samaneh’s discussion

1 Overview

With clustering, we have several key motivations:

• archetypes (factor analysis)

• segmentation

• hierarchy

• faster lookups (quantization)

It’s not trivial to choose an objective to minimize. In PCA, the algorithm was fixed, regard-
less of the objective. With clustering, different objective can result in a different algorithms.
There is no preferred way to do clustering, but we will explore several popular methods in
this note. Here are three approaches to consider:

• k-means (quantization)

• agglomeration (hierarchy)

• spectral (segmentation)

2 K-Means Clustering

In k-means clustering, we segment our data by describing each data point using a centroid
µi. In other words, xi is in cluster j if xi to closer to cluster j than any other cluster,
‖xi − µj‖ < ‖xi − µj′‖ for j 6= j′. Given centroids, this is how we assign points to clusters.
The question is now: how do we pick centroids? We have the following optimization problem:

Minimizeµ1,µ2,...µk

n∑
i=1

Min1≤ji≤k‖xi − µji‖2

(ji is an index) This is effectively an SVM, where we’re fitting parameters to some loss
function. As it turns out, minimizing this cost is NP-hard.

Explore “I want hue”?

1



2.1 Lloyd’s Algorithm

The following is called alternating minimization. If we fix the cluster assignments, the
problem becomes easy. If the cluster assignment is fixed, the objective is a convex function.
Then, if we fix the means, then we can easily cluster. In the following algorithm, we then
alternately fix the cluster assignments or the means and minimize over the other.

1. Initialize µ1, . . . , µk.

2. Assign each point to the jth cluster if it is closest to j. For i = 1, . . . n, assign xi to Cj
if ‖xi − µj‖2 ≤ ‖x2 − µj′‖∀j′ 6= j.

3. If not assignments changed, then return.

4. Assign the mean to the mean of the cluster. µj ← 1
|Cj |

∑
i∈Cj

xi.

5. Go back to 1.

The number of clusters is in fact a hyper-parameter for this algorithm. How do we initialize
µi? We have a few options:

• Pick µ1, µ2, . . . µk at random.

• Initialize using k-means++. (See stronger results by Schulman, Rabani, Swarmy, Os-
trovski.)

– Set µ1 to be randomly-selected xi. In high-dimensional space, a randomly-selected
point may easily be distant from our data.

– For c = 1, . . . k − 1, for i = 1, . . . , n, di = Min1≤j≤C‖xi − µj‖2.
– z =

∑
di

– For i = 1, . . . , n, pi = di
z

. Set µc+1 = xi with probability pi.

– If the distance is large, we have a high probability of picking that point. We have
0 probability of picking the original point.

As it turns out, if there exists a good clustering, and we know the number of clusters, this
algorithm is guaranteed to find that clustering.

2



3 Hierarchical Clustering

Previously, we had a top-down approach, where we took clusters and then assigned samples.
Here, we take a bottom-up approach; we form clusters incrementally. Take clusters of 2,
merge the pairs, then the quadruples etc. This inherently gives us a hierarchy. Let us define
one possible distance metric, called average linkage:

d(A,B) =
1

|A||B|
∑
a∈A

∑
a∈B

Dist(a, b)

We can also define centroid linkage, where µA =
∑

a∈A a.

d(A,B) = Dist(µA, µB)

We could similarly and arbitrarily apply any valid metric:

d(A,B) = Max(Dist(a, b) : a ∈ A, b ∈ B)

3.1 Greedy Algorithm

1. Initialize with n clsuters, Ci = {xi}.

2. Repeat.

3. For all pairs of clusters (A,B), compute d(A,B)

4. Cnew = A ∪B, where d(A,B) is minimized.

The dendogram represents our steps to union each set of clusters.

We can examine a random greedy algorithm

• Choose A uniformly at random

• Cnew = A ∪B, where B is closest to A.

This reduces runtime from n3 to n2 an often produces more stable results.

3



4 Spectral Clustering

View data as a graph, where our nodes are data points x1, . . . xn, and edges are wij, which
denote similarity of two data points, Sim(xi, xj). Here are a few sample similarity functions.

• cosine similarity:
xT xj
‖xi‖‖xj‖

• a kernel function k(xi, xj)

•

{
1 ‖xi − xj‖ ≤ D0

0 otherwise

4.1 Cuts

As it turns out, we can convert clustering into a graph partition problem. Let us formalize
the problem parameters. Our goal is find cut for our graph. Let V be the set of all nodes,
then our partitions V1, V2 must satisfy the following.

• V1 ∪ V2 = V

• V1 ∩ V2 = ∅

The number of cuts is Cut(V1, V2) =
∑

i∈V1
∑

j∈V2 wij. However, we can find a trivial solution
that minimizes the number of cuts, which is to consider V1 = V, V2 = ∅. So, we introduce a
penalty term to make a balanced cut.

MinimizeCut(V1, V2)

subject to |V1| = |V2| = n
2
. (We ignore the odd case for now.) This problem is also NP-hard.

We are now going to transform a discrete problem into a continuous problem.

4



4.2 Graph Laplacian

We have several types of matrices that describe the structure of a graph.

• adjacency matrix (A): Aij = 1 if i, j connected and 0 otherwise

• affinity matrix (W ): entries are s(i, j) if i, j connected and 0 otherwise (no self-loops,
so diagonal entries are 0)

• degree matrix (D): In the derivation below, D is a diagonal matrix with sums of the

• Laplacian matrix (L = D −W ): symmetric, PSD, always has λi = 0, vi = 1

Let us call Mass(G1) the number of nodes in G1, or |V1|. We wish to find 2 or more parittions
of similar sizes, where we cut edges with low weight. We can see that our problem can be
formally expressed as the following.

Minimize
Cut(G1, G2)

Mass(G1)Mass(G2)

4.3 Minimizing the Cut

Let us first define the cut indicator.

vi =

{
1 i ∈ V1
−1 i ∈ V2

We can then define a cut indicator, which tells us if i, j is in the cut.

Cut(V1, V2) =
1

4

n∑
i=1

n∑
j=1

wij(vi − vj)2

If the weight is high, we want nodes to be closer together, and if the weight is low, nodes
are repelled. As it turns out, we can simplify this expression.

5



Cut(V1, V2) =
∑
i∈G1

∑
j∈G2

wij

=
∑

(i,j)∈E

1

4
wij(yi − yj)2

=
1

4

∑
(i,j)∈E

(wijy
2
i − 2wijyiyj + wijy

2
j )

=
1

4

∑
(i,j)∈E

(−2wijyiyj) +
1

4

∑
(i,j)∈E

(wijy
2
i + wijy

2
j )

In the second summation, we sum over all edges in the cut wij, adding weight for both
vertices i, j. This is equivalent to summing over all vertices in the cut, and for each vertex,
adding all weights for edges in the cut.

Cut(V1, V2) =
1

4

∑
(i,j)∈E

(−2wijyiyj) +
n∑
i=1

y2i

n∑
k=1

wik

=
1

4
vT (D −W )v

=
1

4
vTLv

where Lij =

{
−wij i 6= j∑

k wik i = j
. L is known as the Graph Laplacian. This, like the adjacency

matrix, can uniquely identify a graph. We know a few properties about this matrix L.

• L is symmetric.

• L is positive semidefinite, if wij > 0. Since all terms are squared and non-negative,
vTLv ≥ 0,∀v.

• L1 = 0, where 1 is the vector of 1s.

6



We thus have a new objective.

Minimize
1

4
vTLv

such that vi ∈ {−1, 1},1Tv = 0. To make this more explicit, note that along the diagonal
of L, we have

∑
j wij. Since wii = 0, then we have that this sum is equal to the sum of all

other terms in that row. Thus, L1 = 0. Since v 6= 0, λ = 0.

We claim only one such λ exists. Note that if y = 1, Ly = 0 and Cut(G1, G2) = yTLy = 0,
and all nodes are in G1 or G2.

Proof: Assume for contradiction that another v2 6= 1 so that λ2 = 0. So Lv2 = 0 = λ2v2 =⇒
Cut(G1, G2) = 0. We know vT2 Lv2 = 0, and thus the graph is still connected. This means
v2 = 1. Contradiction.

Note that this minimization problem is the exact same problem as the one proposed earlier.
The only difference is that this for continuous-valued numbers. Now, we make an approxi-
mation. Instead, we will subject our problem to ‖v‖2 = n and 1Tv = 0. As it turns out, the
solution to this minimization problem is the second-smallest eigenvalue. If 1Tv = 0 was not
added, the solution would be the first eigenvalue.

There are a variety of other related to the Graph Laplacian - the normalized cut, maximum
cut etc. All of these are NP-hard.

4.4 Minimizing the Masses

Now, let us consider the denominator. We need to additionally constrian the sizes of the
partitions to be similar. How can we ensure that |V1| = |V2| = n

2
. We want thte sum of all

entries in v to be 0. So, 1Ty = 0. The problem is formally

MinimizevTLv

subject to the constraint that ∀i, yi = 1 or yi = −1. Consider a two-dimensional represen-
tation, on only y1, y2. Plotting all combinations of {1,−1}, we have the corners of a square.
We can loosen this constraint so that y1, y2 are anywhere on the circle that passes through

7



all corners of the square. This is a circle of radius
√

2 =
√
n. Generalizing to n, we can relax

this constraint to ‖v‖22 = n or identically, 1Tv = 0. Without any constraints, note that

Minimize
vTLv

vTv
= λmin(L) = 0

So, v1 is not a solution. However, we note that v1 = 1. Note that v2 is orthogonal to v1, so
v2 satisfies the constraint. Our solution is thus the second-smallest eigenvalue.

Consider now the ellipsoid, {x : xTAx = 1}. Our semi-axis length is given by 1√
λi

. Our
principal directions are given by vi. When A = L, we have an eigenvalue of λi = 0, so we
have one axis with length infinity. Seen geometrically, this is a cylinder, where the length of
the cylinder runs along v1. Since we want to vT1 v = 0, then we want v to be orthogonal to
v1. This is a hyperplane orthogonal to v1. Per before, we want ‖v‖22 = n. The constraint
in three-dimensional space is a sphere. Thus, we are looking for the intersection of the
hyperplane with the sphere. This is precisely v2.

8


	Overview
	K-Means Clustering
	Lloyd's Algorithm

	Hierarchical Clustering
	Greedy Algorithm

	Spectral Clustering
	Cuts
	Graph Laplacian
	Minimizing the Cut
	Minimizing the Masses


