Randomized Decision Trees

compiled by Alvin Wan from Professor Jitendra Malik’s lecture

1 Discrete Variables

First, let us consider some terminology. We have primarily been dealing with real-valued
data, where our features are continuous variables. For example, we would consider X € R".
However, some variables are naturally discrete, such as zip codes, political parties, or letter
grades. We can sub-divide discrete variables into two categories:

e Nominal variables have at least two categories but have no intrinsic order e.g., hair
color, zip code, gender, kind of housing

e Ordinal variables have a natural order e.g., education, letter grades. These can often
be converted into real numbers. e.g., years of education, percentages

2 Value of Information

2.1 Surprise

In essence, knowing a certain event has occurred gives us no new information. Knowing that
a rare event has occurred is more informative. In other words, the more likely it is, the less
the surprise.

—log,(p)

Note that when p = 1, surprise is 0, and as the probability of our event decreases or as
p — 0, we see greater and greater surprise, — log, (p) — oo.

Example Consider a random variable X, an indicator for a coin with bias p. Let us assume
that we know p is fairly large, so that p ~ 1. Then, we intuitively receive more information
when we see the coin results in tails.



2.2 Entropy

Entropy is the expected value of the surprise. The expected value of information is
maximized when all the n values are equally likely.
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Consider a case where p; = 1,py = 0. Then, we have that

ENTROPY = —(p; log, p1 + p2 log, p2)
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Now, consider p; = ps = % Then, we have that

ENTROPY = —(p; log, p1 + p2logy p2)
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For base 2, entropy is in units of bits. For base e, entropy is in units of nats.

Example Consider an n-sided coin. We receive most information when P(X;) = %

3 Classification

Example Consider the game, “20 questions”, where one player thinks of a country and the
other has the opportunity to ask 20 yes-no questions. The tree of possibilities is a binary
tree but more generally, the decision tree associated with this example.

Definition Formally, a decision tree models a series of decisions and the consequences of
those decisions.



3.1 Classification

At training time, we construct the tree by picking the “questions” at each node of the
tree. This is done to decrease entropy with each level of the tree. A single leaf node is then
associated with a set of training examples.

At test time, we evaluate the “questions” from the root node. Once a leaf node is reached,
we predict the class to be the one with the most examples - from the training set - at this
node.

Note that training time is slow but that testing is fast. Additionally, this model can ac-
commodate real-valued features. We can achieve this by using, for example, inequalities to
binarize decisions. In this sense, we see that a question could be similar to a perceptron,
where our decision is w;x; > THRESHOLD.

3.2 Example Training

Take some data x € R y € R. We will take the following decision tree:

o At the root, test if fi(x) > THRESHOLD.
e If no, test if fi;(x) > THRESHOLD.

o If yes, test if fio(x) > THRESHOLD.

Eventually, x will land at a leaf. Ideally, this leaves should be pure, meaning that all
outcomes at this leaf node belong to a single class. In a sense, the decision tree divides our
sample space into boxes, using axis-parallel splits.

At test time, we simply classify a new example 2’ and for whatever leaf node it lands at, we
will take a “vote” across all of the training samples that ended at the same leaf node. If this
is a classification problem, we take a majority vote across all k classes. If this is a regression
problem, simply predict the average of all training samples at that leaf node.



3.3 Random Forests

From the empirical distribution at a leaf, we can infer the posterior probability. A Random
Forest is a family of decision trees, across which we average posterior probabilities. Simple-
minded averaging works quite well. With boosting, we re-weight particular decision trees.
This comes at a risk of increasing weights for mis-labeled data.

Random forests benefit from the “wisdom of the crowds”, which is the idea that the average
guess across many participants is more accurate than a single expert’s guess.

4 Design

At the leaves, we want low entropy. Assume that we there exist 256 countries. At the root
of our associated decision tree, our entropy is 8.
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Note that entropies are computed from empirical frequencies and not probabilities. It is not
the true underlying probability but the frequency that we observe.

4.1 A/B Testing

We have a total of ny +ns samples, and at the root node with entropy H, we ask question A.
We see ny positive classifications that proceed to a node with entropy H, and n; negative
classifications that proceed to a node with entropy H_. Our entropy at the second level is
thus

an, + 77,2H+
ny + No

To measure the cost or benefit, we evaluate our information gain. This is the decrease in
entropy, or



o an_ + n2H+

n1 + Na

H

To conduct A /B testing, we simply use the question that results in the highest information
gain. This is not guaranteed to find the optimal decision tree but it gives a reasonable
approximation.

4.2 Examples

The simplest version of a question tests a single feature against a threshold.



