Randomized Decision Trees

compiled by Alvin Wan from Professor Jitendra Malik's lecture

1 Discrete Variables

First, let us consider some terminology. We have primarily been dealing with **real-valued** data, where our features are continuous variables. For example, we would consider $X \in \mathbb{R}^n$. However, some variables are naturally discrete, such as zip codes, political parties, or letter grades. We can sub-divide discrete variables into two categories:

- Nominal variables have at least two categories but have no intrinsic order e.g., hair color, zip code, gender, kind of housing
- Ordinal variables have a natural order e.g., education, letter grades. These can often be converted into real numbers. e.g., years of education, percentages

2 Value of Information

2.1 Surprise

In essence, knowing a certain event has occurred gives us no new information. Knowing that a rare event has occurred is more informative. In other words, the more likely it is, the less the surprise.

$$-\log_b(p)$$

Note that when p = 1, surprise is 0, and as the probability of our event decreases or as $p \to 0$, we see greater and greater surprise, $-\log_b(p) \to \infty$.

Example Consider a random variable X, an indicator for a coin with bias p. Let us assume that we know p is fairly large, so that $p \approx 1$. Then, we intuitively receive more information when we see the coin results in tails.

2.2 Entropy

Entropy is the expected value of the surprise. The expected value of information is maximized when all the n values are equally likely.

ENTROPY =
$$-\sum_{i=1}^{n} p_i \log_b(p_i)$$

Consider a case where $p_1 = 1, p_2 = 0$. Then, we have that

ENTROPY =
$$-(p_1 \log_2 p_1 + p_2 \log_2 p_2)$$

= $-(1 \log_2 1 + 0 \log_2 0)$
= 0

Now, consider $p_1 = p_2 = \frac{1}{2}$. Then, we have that

ENTROPY =
$$-(p_1 \log_2 p_1 + p_2 \log_2 p_2)$$

= $-(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2})$
= $-(-\frac{1}{2} - \frac{1}{2})$
= 1 bit

For base 2, entropy is in units of *bits*. For base *e*, entropy is in units of *nats*.

Example Consider an *n*-sided coin. We receive most information when $P(X_i) = \frac{1}{n}$.

3 Classification

Example Consider the game, "20 questions", where one player thinks of a country and the other has the opportunity to ask 20 yes-no questions. The tree of possibilities is a binary tree but more generally, the decision tree associated with this example.

Definition Formally, a **decision tree** models a series of *decisions* and the *consequences* of those decisions.

3.1 Classification

At **training time**, we construct the tree by picking the "questions" at each node of the tree. This is done to decrease entropy with each level of the tree. A single leaf node is then associated with a set of training examples.

At **test time**, we evaluate the "questions" from the root node. Once a leaf node is reached, we predict the class to be the one with the most examples - from the training set - at this node.

Note that training time is slow but that testing is fast. Additionally, this model can accommodate real-valued features. We can achieve this by using, for example, inequalities to binarize decisions. In this sense, we see that a question could be similar to a perceptron, where our decision is $w_i x_i > \text{THRESHOLD}$.

3.2 Example Training

Take some data $x \in \mathbb{R}^d, y \in \mathbb{R}$. We will take the following decision tree:

- At the root, test if $f_1(x) > \text{THRESHOLD}$.
- If no, test if $f_{11}(x) > \text{THRESHOLD}$.

Eventually, x will land at a leaf. Ideally, this leaves should be **pure**, meaning that all outcomes at this leaf node belong to a single class. In a sense, the decision tree divides our sample space into boxes, using axis-parallel splits.

At test time, we simply classify a new example x' and for whatever leaf node it lands at, we will take a "vote" across all of the training samples that ended at the same leaf node. If this is a classification problem, we take a majority vote across all k classes. If this is a regression problem, simply predict the average of all training samples at that leaf node.

3.3 Random Forests

From the empirical distribution at a leaf, we can infer the posterior probability. A **Random Forest** is a family of decision trees, across which we average posterior probabilities. Simpleminded averaging works quite well. With *boosting*, we re-weight particular decision trees. This comes at a risk of increasing weights for mis-labeled data.

Random forests benefit from the "wisdom of the crowds", which is the idea that the average guess across many participants is more accurate than a single expert's guess.

4 Design

At the leaves, we want low entropy. Assume that we there exist 256 countries. At the root of our associated decision tree, our entropy is 8.

$$\sum_{i=1}^{256} -\frac{1}{256} \log_2 \frac{1}{256} = \sum_{i=1}^{256} \frac{1}{256} \log_2 256 = \sum_{i=1}^{256} \frac{8}{256} = 8$$

Note that entropies are computed from empirical frequencies and not probabilities. It is not the true underlying probability but the frequency that we observe.

4.1 A/B Testing

We have a total of $n_1 + n_2$ samples, and at the root node with entropy H, we ask question A. We see n_2 positive classifications that proceed to a node with entropy H_+ and n_1 negative classifications that proceed to a node with entropy H_- . Our entropy at the second level is thus

$$\frac{n_1H_- + n_2H_+}{n_1 + n_2}$$

To measure the cost or benefit, we evaluate our **information gain**. This is the decrease in entropy, or

$$H - \frac{n_1 H_- + n_2 H_+}{n_1 + n_2}$$

To conduct A/B testing, we simply use the question that results in the highest information gain. This is not guaranteed to find the optimal decision tree but it gives a reasonable approximation.

4.2 Examples

The simplest version of a question tests a single feature against a threshold.