
Randomized Decision Trees
compiled by Alvin Wan from Professor Jitendra Malik’s lecture

1 Discrete Variables

First, let us consider some terminology. We have primarily been dealing with real-valued
data, where our features are continuous variables. For example, we would consider X ∈ Rn.
However, some variables are naturally discrete, such as zip codes, political parties, or letter
grades. We can sub-divide discrete variables into two categories:

• Nominal variables have at least two categories but have no intrinsic order e.g., hair
color, zip code, gender, kind of housing

• Ordinal variables have a natural order e.g., education, letter grades. These can often
be converted into real numbers. e.g., years of education, percentages

2 Value of Information

2.1 Surprise

In essence, knowing a certain event has occurred gives us no new information. Knowing that
a rare event has occurred is more informative. In other words, the more likely it is, the less
the surprise.

− logb(p)

Note that when p = 1, surprise is 0, and as the probability of our event decreases or as
p→ 0, we see greater and greater surprise, − logb(p)→∞.

Example Consider a random variable X, an indicator for a coin with bias p. Let us assume
that we know p is fairly large, so that p ≈ 1. Then, we intuitively receive more information
when we see the coin results in tails.
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2.2 Entropy

Entropy is the expected value of the surprise. The expected value of information is
maximized when all the n values are equally likely.

Entropy = −
n∑

i=1

pi logb(pi)

Consider a case where p1 = 1, p2 = 0. Then, we have that

Entropy = −(p1 log2 p1 + p2 log2 p2)

= −(1 log2 1 + 0 log2 0)

= 0

Now, consider p1 = p2 = 1
2
. Then, we have that

Entropy = −(p1 log2 p1 + p2 log2 p2)
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= 1 bit

For base 2, entropy is in units of bits. For base e, entropy is in units of nats.

Example Consider an n-sided coin. We receive most information when P (Xi) = 1
n
.

3 Classification

Example Consider the game, “20 questions”, where one player thinks of a country and the
other has the opportunity to ask 20 yes-no questions. The tree of possibilities is a binary
tree but more generally, the decision tree associated with this example.

Definition Formally, a decision tree models a series of decisions and the consequences of
those decisions.
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3.1 Classification

At training time, we construct the tree by picking the “questions” at each node of the
tree. This is done to decrease entropy with each level of the tree. A single leaf node is then
associated with a set of training examples.

At test time, we evaluate the “questions” from the root node. Once a leaf node is reached,
we predict the class to be the one with the most examples - from the training set - at this
node.

Note that training time is slow but that testing is fast. Additionally, this model can ac-
commodate real-valued features. We can achieve this by using, for example, inequalities to
binarize decisions. In this sense, we see that a question could be similar to a perceptron,
where our decision is wixi > Threshold.

3.2 Example Training

Take some data x ∈ Rd, y ∈ R. We will take the following decision tree:

• At the root, test if f1(x) > Threshold.

• If no, test if f11(x) > Threshold.

• If yes, test if f12(x) > Threshold.
...

Eventually, x will land at a leaf. Ideally, this leaves should be pure, meaning that all
outcomes at this leaf node belong to a single class. In a sense, the decision tree divides our
sample space into boxes, using axis-parallel splits.

At test time, we simply classify a new example x′ and for whatever leaf node it lands at, we
will take a “vote” across all of the training samples that ended at the same leaf node. If this
is a classification problem, we take a majority vote across all k classes. If this is a regression
problem, simply predict the average of all training samples at that leaf node.
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3.3 Random Forests

From the empirical distribution at a leaf, we can infer the posterior probability. A Random
Forest is a family of decision trees, across which we average posterior probabilities. Simple-
minded averaging works quite well. With boosting, we re-weight particular decision trees.
This comes at a risk of increasing weights for mis-labeled data.

Random forests benefit from the “wisdom of the crowds”, which is the idea that the average
guess across many participants is more accurate than a single expert’s guess.

4 Design

At the leaves, we want low entropy. Assume that we there exist 256 countries. At the root
of our associated decision tree, our entropy is 8.

256∑
i=1

− 1

256
log2

1

256
=

256∑
i=1

1

256
log2 256 =

256∑
i=1

8

256
= 8

Note that entropies are computed from empirical frequencies and not probabilities. It is not
the true underlying probability but the frequency that we observe.

4.1 A/B Testing

We have a total of n1 +n2 samples, and at the root node with entropy H, we ask question A.
We see n2 positive classifications that proceed to a node with entropy H+ and n1 negative
classifications that proceed to a node with entropy H−. Our entropy at the second level is
thus

n1H− + n2H+

n1 + n2

To measure the cost or benefit, we evaluate our information gain. This is the decrease in
entropy, or
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H − n1H− + n2H+

n1 + n2

To conduct A/B testing, we simply use the question that results in the highest information
gain. This is not guaranteed to find the optimal decision tree but it gives a reasonable
approximation.

4.2 Examples

The simplest version of a question tests a single feature against a threshold.
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