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This document explores the implications of Kullback-Leibler (KL) Divergence and how it
relates to both cross entropy and logistic regression. We will derive cross entropy from KL-
divergence and coerce log loss with the derivation of logistic regression presented in Note 11:
Logistic Regression.

1 Cross Entropy

In Note 11, we showed that our assumptions led to a log-linear model. As it turns out, this
model is the least biased within constraints.

In logistic regression, we would like to find a probability distribution that accurately repre-
sents our model. In other words, we consider the best projection of empirical probabilities
onto a log-linear model. To minimize the difference between an empirical probability dis-
tribution and the log-linear probability distribution, we need a measure of “divergence”,
which KL-divergence provides. In the derivation below, we will show how minimizing KL-
divergence is equivalent to minimizing cross entropy.

Consider the definition of cross entropy, for the true distribution pi and predicted distribution
qi. The entropy of p and q (H(p, q)) is the sum of the true distribution’s entropy (H(p)) and
the KL-divergence of q from p (K(p||q)).

H(p, q) = H(p) +K(p||q)

Note that H(p) is a constant. To minimize cross entropy, we thus minimize the KL-
divergence. We can re-express KL-divergence using the following. For the second step,
we apply chain rule. In the third step, we note that all p(· · · ) are constants.
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K(p||q) =

∫
(x,y)

p(x, y) log(
p(x, y)

q(x, y)
)

=

∫
(x,y)

p(x, y) log(p(x, y))−
∫
(x,y)

p(x, y) log(q(x, y))

=

∫
(x,y)

p(x, y) log(p(x, y))−
∫
(x,y)

p(x, y) log(q(y|x)p(x))

=

∫
(x,y)

p(x, y) log(p(x, y))−
∫
(x,y)

p(x, y) log(p(x))−
∫
(x,y)

p(x, y) log(q(y|x))

= C −
∫
(x,y)

p(x, y) log(q(y|x))

The true distribution is unknown but can be estimated using the training data {xi, yi}ni=1.
Thus we take the following.

minimizeH(p, q) = minimizeK(p||q) = minimize−
∑
i

log(q(yi|xi, θ))

This is precisely our formulation for log loss, or cross entropy. Note that p(xi, yi) is always
1. We take the average for our log loss definition:

− 1

n

n∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

2 Logistic Regression

In Note 11, we applied MLE, assuming a uniform prior and taking class-conditional prob-
abilities to be the sigmoid. This yielded the following, where yi are labels, and µi are the
predicted labels.

∑
i

yi log(µi) + (1− yi) log(1− µi)

Note that the negative, normalized version of this quantity gives us the definition of cross
entropy. Thus, maximizing this quantity is equivalent to minimizing the quantity in the
previous section.
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