Machine Learning Decisions

written by Alvin Wan

1 Summary of Models

The following is a tabular summary of models and the information they offer.

Source: http://cross-entropy.net

Model	Classif or Regr	Gen or Disc	Par or Non-par
Gaussian Discriminant Analysis	Classification	Generative	Parameteric
Naive Bayes Classifier	Classification	Generative	Parametric
Linear Regression	Regression	Discriminative	Parametric
Logistic Regression	Classification	Discriminative	Parametric
Neural Network	Both	Discriminative	Parametric
K nearest neighbor classifier	Classification	Generative	Non-parametric
Decision Trees	Both	Discriminative	Non-parametric
Sparse Kernelized Lin/Log Regression	Both	Discriminative	Non-parametric
Support Vector Machine (SVM)	Both	Discriminative	Non-parametric

2 Survey of Classes, Models, Algorithms

We will begin with a general survey of classes of models, models, and algorithms. This overview overlaps with information below, but we hope that providing a holistic view of these options gives more insight.

2.1 Classes

As in Note 9 : Gaussian Discriminant Analyses, we will consider the following classes of models and when each is most applicable:

1. Empirical Risk Minimization

These methods do not yield a probabilistic model and instead only compute a decision boundary.

2. Generative Models

We first model the class-conditional probability Pr(X|Y) and using Bayes', then model the posterior Pr(Y|X); these models take fewer samples to reach the same accuracy as discriminative models but make assumptions about the data's distribution. The models are usually more interpretable.

3. Discriminative Models

We directly model the posterior Pr(Y|X); these models take more samples to train but do not make assumptions about the class-conditional probability densities.

2.2 Models

This is a brief survey of models that we can pick from. We identify key characteristics of each model that may influence your decision; we leave the mathematical rigor of proving these solutions or gradients to other notes.

- 1. Linear Regression (derivation in Note 10)
 - Discriminative Model
 - Boundary is linear
- 2. Logistic Regression (derivation in Note 11)
 - Discriminative model
 - Boundary is linear; to compute, set class-conditional probability to $\frac{1}{n_C}$, where n_C is the number of classes
 - For binary classification, take MLE of Bernoulli class-conditional density.

3. Least Squares

- Has a closed-form solution
- Equivalent to MLE of Gaussian class-conditional probability density.

4. Ridge Regression

- Has a closed-form solution
- Equivalent to MLE of Gaussian class-conditional densities and priors.

5. **Lasso**

- Does not have a closed-form solution
- Equivalent to MLE of Gaussian class-conditional density and Laplace prior.
- Induces model sparsity

6. Perceptron

• Converges only if data is linearly-separable

7. Quadratic Discriminant Analysis

- Generative Model
- Creates a quadric surface for a decision boundary

8. Linear Discriminant Analysis

- Generative Model
- Creates a hyperplane for a decision boundary

2.3 Algorithms

1. Gradient Descent

- Each iteration is relatively slow to compute.
- For least-squares and least-squares variants the gradient for matrices is very similar to the gradient for single samples.

2. Stochastic Gradient Descent

- Each iteration is relatively fast to compute.
- Converges slower than gradient descent.

3. Newton's Method (i.e., Newton-Raphson)

- Converges in one iteration for a quadratic loss function.
- Generally converges faster than gradient descent, where well-defined.
- Compute $w_{k+1} = w_k \frac{f(w_k)}{f'(w_k)}$ to find the roots.
- Compute $w_{k+1} = w_k \frac{f'(w_k)}{f''(w_k)}$ to find the extrema.

3 Picking based on Data

In the following sections, we explore various choices of algorithms and models, based on our data.

3.1 Picking Algorithms: Linearly Separable or Not

Note that given a set of data, there always exists a linear boundary in some higher dimensional space. Thus, we consider a dataset to be linearly separable *given* a set of features. The following algorithms work only for linearly-separable data. By this, we mean that if the data is not linearly-separable, these algorithms will not converge or terminate:

- 1. Perceptron
- 2. Hard-margin Support Vector Machines

The following algorithms *will* converge but will have poor results, because the boundary is linear:

1. Linear Discriminant Analysis (proof of linear boundary in Note 9)

LDA computes a single quantity, instead of iterating until convergence. Thus, it will yield a value but not necessarily an accurate one.

The following algorithms will yield reasonable values, as they compute a non-linear combination of feature vectors.

1. Quadratic Discriminant Analysis (proof of quadratic boundary in Note 9)

3.2 Picking Models: Features v. Samples

We consider an $n \times d$ matrix of samples X. We can make several decisions based on the dimensions of X, specifically whether n > d or when d > n. This is because $X^T X$ is $d \times d$ and XX^T is $n \times n$. Let us consider different models for gradient descent and stochastic gradient descent.

Note that if n < d, we can't take the inverse of $X^T X$, since $rank(X) = rank(X^T X) \le n < d$, meaning that $X^T X$ cannot be full rank.

If n < d, we generally use the following tricks:

- Plug in $w = w_n + X^T \alpha$ into the objective function, and compute the optimal α . In this case, we compute $(O(n^2d))$ an $n \times n$ matrix, XX^T and invert it in $O(n^3)$. Computing w^* involves computing $X^T X$ $(O(nd^2))$ and inverting the $d \times d$ in $O(d^3)$.
- Apply the matrix inversion trick, so that our gradient for example, for ridge regression - is $X(X^TX + \lambda I)^{-1}y$

4 Bias-Variance Tradeoffs

We note first that for any regression problem, mean squared error will decompose into the following terms; see Note 12 and Note 13 for derivations of this:

BIAS + VARIANCE + IRREDUCIBLE ERROR

- 1. Add regularization term: increases bias, decreases variance
- 2. Add new feature, or use more expressive kernel: decreases bias, increases variance
- 3. Add more data: variance decreases