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1 Summary of Models

The following is a tabular summary of models and the information they offer.

Source: http://cross-entropy.net

Model Classif or Regr Gen or Disc Par or Non-par
Gaussian Discriminant Analysis Classification Generative Parameteric
Naive Bayes Classifier Classification Generative Parametric
Linear Regression Regression Discriminative Parametric
Logistic Regression Classification Discriminative Parametric
Neural Network Both Discriminative Parametric
K nearest neighbor classifier Classification Generative Non-parametric
Decision Trees Both Discriminative Non-parametric
Sparse Kernelized Lin/Log Regression Both Discriminative Non-parametric
Support Vector Machine (SVM) Both Discriminative Non-parametric

2 Survey of Classes, Models, Algorithms

We will begin with a general survey of classes of models, models, and algorithms. This
overview overlaps with information below, but we hope that providing a holistic view of
these options gives more insight.

2.1 Classes

As in Note 9 : Gaussian Discriminant Analyses, we will consider the following classes of
models and when each is most applicable:
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1. Empirical Risk Minimization

These methods do not yield a probabilistic model and instead only compute a decision
boundary.

2. Generative Models

We first model the class-conditional probability Pr(X|Y ) and using Bayes’, then model
the posterior Pr(Y |X); these models take fewer samples to reach the same accuracy
as discriminative models but make assumptions about the data’s distribution. The
models are usually more interpretable.

3. Discriminative Models

We directly model the posterior Pr(Y |X); these models take more samples to train but
do not make assumptions about the class-conditional probability densities.

2.2 Models

This is a brief survey of models that we can pick from. We identify key characteristics of
each model that may influence your decision; we leave the mathematical rigor of proving
these solutions or gradients to other notes.

1. Linear Regression (derivation in Note 10)

• Discriminative Model

• Boundary is linear

2. Logistic Regression (derivation in Note 11)

• Discriminative model

• Boundary is linear; to compute, set class-conditional probability to 1
nC

, where nC

is the number of classes

• For binary classification, take MLE of Bernoulli class-conditional density.

3. Least Squares

• Has a closed-form solution

• Equivalent to MLE of Gaussian class-conditional probability density.
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4. Ridge Regression

• Has a closed-form solution

• Equivalent to MLE of Gaussian class-conditional densities and priors.

5. Lasso

• Does not have a closed-form solution

• Equivalent to MLE of Gaussian class-conditional density and Laplace prior.

• Induces model sparsity

6. Perceptron

• Converges only if data is linearly-separable

7. Quadratic Discriminant Analysis

• Generative Model

• Creates a quadric surface for a decision boundary

8. Linear Discriminant Analysis

• Generative Model

• Creates a hyperplane for a decision boundary

2.3 Algorithms

1. Gradient Descent

• Each iteration is relatively slow to compute.

• For least-squares and least-squares variants the gradient for matrices is very sim-
ilar to the gradient for single samples.

2. Stochastic Gradient Descent

• Each iteration is relatively fast to compute.

• Converges slower than gradient descent.
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3. Newton’s Method (i.e., Newton-Raphson)

• Converges in one iteration for a quadratic loss function.

• Generally converges faster than gradient descent, where well-defined.

• Compute wk+1 = wk − f(wk)
f ′(wk)

to find the roots.

• Compute wk+1 = wk − f ′(wk)
f ′′(wk)

to find the extrema.

3 Picking based on Data

In the following sections, we explore various choices of algorithms and models, based on our
data.

3.1 Picking Algorithms: Linearly Separable or Not

Note that given a set of data, there always exists a linear boundary in some higher dimen-
sional space. Thus, we consider a dataset to be linearly separable given a set of features.
The following algorithms work only for linearly-separable data. By this, we mean that if the
data is not linearly-separable, these algorithms will not converge or terminate:

1. Perceptron

2. Hard-margin Support Vector Machines

The following algorithms will converge but will have poor results, because the boundary is
linear:

1. Linear Discriminant Analysis (proof of linear boundary in Note 9)

LDA computes a single quantity, instead of iterating until convergence. Thus, it will
yield a value but not necessarily an accurate one.

The following algorithms will yield reasonable values, as they compute a non-linear combi-
nation of feature vectors.

1. Quadratic Discriminant Analysis (proof of quadratic boundary in Note 9)
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3.2 Picking Models: Features v. Samples

We consider an n × d matrix of samples X. We can make several decisions based on the
dimensions of X, specifically whether n > d or when d > n. This is because XTX is d × d
and XXT is n × n. Let us consider different models for gradient descent and stochastic
gradient descent.

Note that if n < d, we can’t take the inverse of XTX, since rank(X) = rank(XTX) ≤ n < d,
meaning that XTX cannot be full rank.

If n < d, we generally use the following tricks:

• Plug in w = wn +XTα into the objective function, and compute the optimal α. In this
case, we compute (O(n2d)) an n× n matrix, XXT and invert it in O(n3). Computing
w∗ involves computing XTX (O(nd2)) and inverting the d× d in O(d3).

• Apply the matrix inversion trick, so that our gradient - for example, for ridge regression
- is X(XTX + λI)−1y

4 Bias-Variance Tradeoffs

We note first that for any regression problem, mean squared error will decompose into the
following terms; see Note 12 and Note 13 for derivations of this:

Bias + Variance + Irreducible Error

1. Add regularization term: increases bias, decreases variance

2. Add new feature, or use more expressive kernel: decreases bias, increases variance

3. Add more data: variance decreases
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